There were 12 new TNO discoveries announced since the previous issue of Distant EKOs:
2013 SA100, 2013 SZ99, 2013 UQ15, 2013 US15, 2014 QF442, 2014 TF86, 2014 UH225, 2014 UK225, 2014 UL225, 2014 UM225, 2015 RT245, 2016 SS46
and 11 new Centaur/SDO discoveries:
2013 UR15, 2014 HY195, 2014 QG442, 2014 RS63, 2014 UJ225, 2015 RU245, 2015 RV245, 2015 RW245, 2016 QP85, 2017 GY8, 2017 KZ31
Objects recently assigned numbers:
2003 HY56 = (488644)
2012 VU113 = (491767)
2012 VV113 = (491768)
2014 FW = (492338)
2014 YZ49 = (493480)
2016 EX = (494158)
Deleted/Re-identified objects:
2010 TR19 = 2014 QA442
Current number of TNOs: 1815 (including Pluto)
Current number of Centaurs/SDOs: 706
Current number of Neptune Trojans: 17
Out of a total of 2538 objects:
711 have measurements from only one opposition
705 of those have had no measurements for more than a year
344 of those have arcs shorter than 10 days
(for more details, see:
http://www.boulder.swri.edu/ekonews/objects/recov_stats.jpg
)
The cold classical Kuiper Belt Objects have low inclinations and
eccentricities (Brown 2001, Kavelaars et al. 2009), and are the only Kuiper
Belt population suspected to have formed in-situ (Parker & Kavelaars 2010).
Compared to the dynamically excited populations which exhibit a broad
range of colours, and a low 10% binary
fraction (Noll 2008), cold classical objects typically
possess red optical colours (Gulbis et al. 2006), with
30% of the
population found in binary pairs (Grundy et al. 2011); the origin of these
differences remains unclear (Benecchi et al. 2009,Fraser& Brown 2012). We report
the detection of a population of blue coloured, tenuously-bound binaries
residing amongst the cold classical objects. Here we show that widely
separated binaries can survive push-out into the cold classical region
during the early phases of Neptune's migration (Nesvorny 2015). The
blue binaries may be contaminants, originating at
38 AU, and could
provide a unique probe of the formative conditions in a region now
nearly devoid of objects. The idea that the blue objects, which are
predominantly binary, are products of push-out requires that
planetesimals form entirely as multiples. Plausible formation routes
include planetesimal formation via pebble accretion (Shannon et al. 2016)
and subsequent binary production through dynamical
friction (Goldreich et al. 2002), and binary formation during the collapse
of a cloud of solids (Nesvorny et al. 2010).
Published in: Nature Astronomy, 1, 88 (2017 April 4)
For preprints, contact wes.fraser@qub.ac.uk
or on the web at https://arxiv.org/abs/1705.00683
Time series observations of the dwarf planet Haumea and the Plutinos
2003 VS2 and 2003 AZ84 with Herschel/PACS are presented in
this work. Thermal emission of these trans-Neptunian objects (TNOs) were
acquired as part of the TNOs are Cool Herschel Space Observatory key
programme. We search for the thermal light curves at 100 and 160 m
of Haumea and 2003 AZ84, and at 70 and 160
m for 2003 VS2
by means of photometric analysis of the PACS data. The goal of this work
is to use these thermal light curves to obtain physical and
thermophysical properties of these icy Solar System bodies. When a
thermal light curve is detected, it is possible to derive or constrain
the object thermal inertia, phase integral and/or surface roughness with
thermophysical modeling. Haumea's thermal light curve is clearly
detected at 100 and 160
m. The effect of the reported dark spot is
apparent at 100
m. Different thermophysical models were applied to
these light curves, varying the thermophysical properties of the surface
within and outside the spot. Although no model gives a perfect fit to
the thermal observations, results imply an extremely low thermal
inertia (<0.5 J m-2 s-1/2 K-1, hereafter MKS) and a
high phase integral (>0.73) for Haumea's surface. We note that the
dark spot region appears to be only weakly different from the rest of
the object, with modest changes in thermal inertia and/or phase
integral. The thermal light curve of 2003 VS2 is not firmly
detected at 70
m and at 160
m but a thermal inertia of
MKS can be derived from these data. The thermal light curve
of 2003 AZ84 is not firmly detected at 100
m. We apply a
thermophysical model to the mean thermal fluxes and to all the
Herschel/PACS and Spitzer/MIPS thermal data of 2003 AZ84, obtaining
a close to pole-on orientation as the most likely for this TNO. For the
three TNOs, the thermal inertias derived from light curve analyses or
from the thermophysical analysis of the mean thermal fluxes confirm the
generally small or very small surface thermal inertias of the TNO
population, which is consistent with a statistical mean value
MKS.
To appear in: Astronomy & Astrophysics
For preprints, contact psantos@iaa.es
or on the web at https://doi.org/10.1051/0004-6361/201630354
and at https://arxiv.org/abs/1705.09117
Comet 67P/Churyumov-Gerasimenko (67P hereinafter) is characterized by a
dust transfer from the southern hemi-nucleus to the night-side northern
dust deposits, which constrains the dust-to-ices mass ratio inside the
nucleus to values a factor of 2 larger than that provided by the lost
mass of gas and non-volatiles. This applies to all comets because the
gas density in all night comae cannot prevent the dust fallback. Taking
into account Grain Impact Analyser and Dust Accumulator (GIADA) data
collected during the entire Rosetta mission, we update the average dust
bulk density to
kg m-3 that, coupled
to the 67P nucleus bulk density, confirms an average dust-to-ices mass
ratio
inside 67P. The improved dust densities are
consistent with a mixture of
% of ices,
% of Fe
sulphides,
% of silicates and
% of
hydrocarbons, on average volume abundances. These values correspond to
solar chemical abundances, as suggested by the elemental C/Fe ratio
observed in 67P. The ice content in 67P matches that inferred in Kuiper
belt objects,
% on average volume abundance and suggests a
water content in all trans-Neptunian objects lower than in CI
chondrites. The 67P icy pebbles and the dust collected by GIADA have a
microporosity of
% and
%, respectively.
Published in: Monthly Notices of the Royal Astronomical Society, 469, S45-S49
For reprints, contact fulle@oats.inaf.it
We accept submissions for the following sections:
Distant EKOs is not a refereed publication, but is a tool for furthering communication among people interested in Kuiper belt research. Publication or listing of an article in the Newsletter or the web page does not constitute an endorsement of the article's results or imply validity of its contents. When referencing an article, please reference the original source; Distant EKOs is not a substitute for peer-reviewed journals.