Orbit Fit and Astrometric record for 15GY56

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 15GY56    
# Created Tue Jan 21 02:10:32 2025
# Orbit generated from Bernstein formalism
# Fitting     36 observations of     36
# Arc:   2.11y
# First observation: 2015/02/17
#  Last observation: 2017/03/29
Preliminary a, adot, b, bdot, g, gdot:
  -0.000095   0.020605   0.000000  -0.000273   0.022372   0.000000
# Chi-squared of fit:    19.43 DOF:     66 RMS:  0.13
# Min/Max residuals:    -0.34    0.37
# Exact a, adot, b, bdot, g, gdot:
  1.427962E-05  2.050064E-02 -4.899573E-07 -2.710935E-04  2.239979E-02 -8.765946E-05
# Covariance matrix:
  1.7110E-13 -2.0158E-14  1.7678E-16 -1.3734E-15  1.3620E-13  3.3652E-12
 -2.0158E-14  2.7582E-13  5.9300E-16 -3.7436E-15  1.6675E-13  9.1332E-12
  1.7678E-16  5.9300E-16  9.3130E-14 -8.3544E-14  5.8265E-16  3.8887E-14
 -1.3734E-15 -3.7436E-15 -8.3544E-14  1.3244E-13 -4.0003E-15 -2.4205E-13
  1.3620E-13  1.6675E-13  5.8265E-16 -4.0003E-15  2.7209E-13  9.7779E-12
  3.3652E-12  9.1332E-12  3.8887E-14 -2.4205E-13  9.7779E-12  5.9033E-10
#      lat0       lon0       xBary       yBary       zBary        JD0
    0.153334 -154.560991    0.828323    0.001575   -0.533548  2457071.002878
# Heliocentric elements and errors
Epoch:              2457070.5000  =  2015/02/17
Mean Anomaly:          209.07238 +/-     1.325
Argument of Peri:      321.85066 +/-     1.324
Long of Asc Node:       35.77094 +/-     0.014
Inclination:             0.76728 +/-     0.001
Eccentricity:         0.04346040 +/-    0.0005
Semi-Major Axis:     43.51565210 +/-    0.0031
Time of Perihelion: 2501027.9909 +/-     385.7
Perihelion:          41.62444437 +/-    0.0235
Aphelion:            45.40685982 +/-    0.0236
Period (y)              287.0625 +/-      0.03
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -41.15502291 +/-    0.0009
Ecliptic Y          -18.65760174 +/-    0.0004
Ecliptic Z            0.11944568 +/-    0.0000
Ecliptic XDOT         0.00108228 +/-    0.0000
Ecliptic YDOT        -0.00226378 +/-    0.0000
Ecliptic ZDOT        -0.00003307 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   45.18690386 +/-    0.0009
Geocenter to KBO     44.64326872 +/-    0.0010
# Hcoef:  8.03

The following table shows the complete astrometric record for 15GY56. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (15GY56) followed by the observatory code and reference code for the source of the astrometry.

2015 02  17.50210  13 34 32.171  -09 41 43.23  24.8r 15GY56    568  C~2nvU      
2015 02  17.54344  13 34 32.090  -09 41 42.84  24.9r 15GY56    568  C~2nvU      
2015 02  20.47426  13 34 25.985  -09 41 07.42  24.0r 15GY56    568  C~2nvU      
2015 03  18.47063  13 33 07.615  -09 33 33.31  24.8r 15GY56    568  C~2nvU      
2015 03  18.47537  13 33 07.584  -09 33 33.36  24.9r 15GY56    568  C~2nvU      
2015 03  18.52182  13 33 07.390  -09 33 32.31  25.0r 15GY56    568  C~2nvU      
2015 03  20.52388  13 32 59.886  -09 32 48.81  25.0r 15GY56    568  C~2nvU      
2015 04  11.41445  13 31 30.078  -09 24 08.70  24.7r 15GY56    568  C~2nvU      
2015 04  12.36711  13 31 25.982  -09 23 44.83  24.6r 15GY56    568  C~2nvU      
2015 04  12.40803  13 31 25.816  -09 23 43.88  24.5r 15GY56    568  C~2nvU      
2015 04  12.45503  13 31 25.598  -09 23 42.82  24.4r 15GY56    568  C~2nvU      
2015 04  14.46499  13 31 16.980  -09 22 52.68  24.7r 15GY56    568  C~2nvU      
2015 04  18.42564  13 30 59.927  -09 21 13.97  24.6r 15GY56    568  C~2nvU      
2015 04  18.47335  13 30 59.733  -09 21 12.90  24.1r 15GY56    568  C~2nvU      
2015 05  25.37637  13 28 37.355  -09 07 28.60  24.2r 15GY56    568  C~2nvU      
2015 05  25.43418  13 28 37.170  -09 07 27.48  25.1r 15GY56    568  C~2nvU      
2015 06  21.32593  13 27 36.509  -09 01 40.08  24.7r 15GY56    568  C~2nvU      
2015 06  22.28249  13 27 35.301  -09 01 33.29  24.4r 15GY56    568  C~2nvU      
2015 07  12.27649  13 27 26.527  -09 00 49.16  24.5r 15GY56    568  C~2nvU      
2015 07  15.26670  13 27 28.028  -09 00 58.65  24.1r 15GY56    568  C~2nvU      
2016 02  04.60217  13 39 15.933  -10 09 55.65  24.8w 15GY56    568  C~2nvU      
2016 02  10.62117  13 39 09.493  -10 09 18.44  24.9w 15GY56    568  C~2nvU      
2016 02  11.58524  13 39 08.183  -10 09 11.10  25.1w 15GY56    568  C~2nvU      
2016 03  11.58783  13 37 56.958  -10 02 23.69  23.8w 15GY56    568  C~2nvU      
2016 03  11.63454  13 37 56.807  -10 02 22.58  25.2w 15GY56    568  C~2nvU      
2016 03  12.48427  13 37 53.901  -10 02 06.43  23.5w 15GY56    568  C~2nvU      
2016 04  03.46148  13 36 28.950  -09 53 59.78  24.9w 15GY56    568  C~2nvU      
2016 04  09.44264  13 36 03.550  -09 51 34.28  24.7w 15GY56    568  C~2nvU      
2016 05  02.32341  13 34 26.245  -09 42 16.26  24.5w 15GY56    568  C~2nvU      
2016 05  02.35991  13 34 26.095  -09 42 15.36  24.3w 15GY56    568  C~2nvU      
2016 05  07.36327  13 34 05.956  -09 40 20.21  24.8w 15GY56    568  C~2nvU      
2016 05  28.31243  13 32 52.484  -09 33 19.46  24.7w 15GY56    568  C~2nvU      
2016 05  29.31935  13 32 49.503  -09 33 02.68  25.3w 15GY56    568  C~2nvU      
2016 06  04.38178  13 32 32.886  -09 31 28.00  24.9w 15GY56    568  C~2nvU      
2016 06  27.29699  13 31 53.027  -09 27 43.60  24.7w 15GY56    568  C~2nvU      
2017 03  29.46402  13 41 19.954  -10 22 45.18        15GY56    568  C~2nvU      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00     0.04       0.00     0.06
     2   0.0001     -1.26     0.11      -0.07     0.01
     3   0.0081    -98.23    -0.07       0.01     0.00
     4   0.0793  -1343.04     0.26      -0.15     0.21
     5   0.0793  -1343.45     0.13      -0.37    -0.00
     6   0.0795  -1346.51    -0.13      -0.44    -0.05
     7   0.0849  -1465.73     0.08      -0.51     0.00
     8   0.1449  -2892.80     0.01      -2.75    -0.14
     9   0.1475  -2957.96    -0.21      -2.75    -0.03
    10   0.1476  -2960.60    -0.01      -2.77    -0.02
    11   0.1477  -2963.99    -0.14      -2.96    -0.19
    12   0.1532  -3101.06     0.14      -3.06     0.01
    13   0.1641  -3372.12    -0.27      -3.78    -0.09
    14   0.1642  -3375.19    -0.02      -3.84    -0.13
    15   0.2652  -5639.68    -0.01     -12.07    -0.06
    16   0.2654  -5642.64    -0.05     -12.04     0.01
    17   0.3390  -6606.80    -0.07     -20.37     0.00
    18   0.3416  -6625.95    -0.06     -20.66     0.01
    19   0.3964  -6763.19    -0.02     -27.62    -0.09
    20   0.4046  -6739.00     0.37     -28.23     0.33
    21   0.9640   4521.72     0.10     -56.17     0.01
    22   0.9805   4419.57     0.03     -55.81     0.26
    23   0.9831   4398.87     0.06     -55.95     0.09
    24   1.0625   3270.50    -0.12     -56.47    -0.08
    25   1.0626   3268.02    -0.06     -56.24     0.16
    26   1.0650   3222.15    -0.30     -56.72    -0.34
    27   1.1251   1875.86     0.09     -58.23    -0.05
    28   1.1415   1473.27    -0.02     -58.99    -0.05
    29   1.2042    -69.56     0.02     -62.69     0.16
    30   1.2043    -71.95     0.03     -62.66     0.21
    31   1.2180   -391.21     0.01     -64.01    -0.03
    32   1.2753  -1556.45     0.05     -69.06     0.16
    33   1.2781  -1603.63     0.04     -69.56    -0.06
    34   1.2947  -1867.05     0.04     -71.32    -0.05
    35   1.3574  -2498.04    -0.13     -78.31    -0.01
    36   2.1108   6507.97     0.06    -114.41    -0.20

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.

15GY56    quality flag:3

Type:      CLASSICAL CLASSICAL CLASSICAL

axisobj        43.134    43.142    43.126
ecceobj         0.053     0.053     0.053
incobj          0.771     0.771     0.771
qmin           40.190    40.220    40.214
qmax           46.817    46.821    46.792
amean          43.410    43.419    43.402
amin           43.077    43.078    43.067
amax           43.760    43.776    43.751
emean           0.053     0.053     0.053
emin            0.033     0.033     0.033
emax            0.070     0.070     0.070
imean           1.516     1.515     1.518
imin            0.458     0.462     0.452
imax            2.250     2.248     2.251
excite_mean     0.060     0.060     0.060
fracstop        1.000     1.000     1.000
cjmean          3.090     3.090     3.090

libcent 0      -180.0    -180.0    -180.0
libamp  0      -180.0    -180.0    -180.0
libcent 1      -180.0    -180.0    -180.0
libamp  1      -180.0    -180.0    -180.0
libcent 2      -180.0    -180.0    -180.0
libamp  2      -180.0    -180.0    -180.0
libcent 3      -180.0    -180.0    -180.0
libamp  3      -180.0    -180.0    -180.0
libcent 4      -180.0    -180.0    -180.0
libamp  4      -180.0    -180.0    -180.0

kozaimean       191.5     191.8     191.4
kozaiamp        180.0     180.0     180.0