Orbit Fit and Astrometric record for 15VP168

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 15VP168   
# Created Tue Apr  1 01:10:39 2025
# Orbit generated from Bernstein formalism
# Fitting     36 observations of     36
# Arc:   2.19y
# First observation: 2014/11/17
#  Last observation: 2017/01/26
Preliminary a, adot, b, bdot, g, gdot:
  -0.000010   0.020721  -0.000001   0.000712   0.022284   0.000000
# Chi-squared of fit:     8.48 DOF:     66 RMS:  0.09
# Min/Max residuals:    -0.17    0.30
# Exact a, adot, b, bdot, g, gdot:
  1.507481E-05  2.082229E-02 -9.325084E-07  7.169046E-04  2.240801E-02 -1.186216E-04
# Covariance matrix:
  3.3061E-13 -4.4547E-13  4.7498E-15 -1.1274E-14 -2.1682E-13 -6.6862E-12
 -4.4547E-13  8.5052E-13 -1.1116E-14  2.6487E-14  4.6205E-13  1.5693E-11
  4.7498E-15 -1.1116E-14  1.8890E-13 -1.2425E-13 -6.6710E-15 -2.3456E-13
 -1.1274E-14  2.6487E-14 -1.2425E-13  1.0495E-13  1.5666E-14  5.5986E-13
 -2.1682E-13  4.6205E-13 -6.6710E-15  1.5666E-14  3.8084E-13  9.3148E-12
 -6.6862E-12  1.5693E-11 -2.3456E-13  5.5986E-13  9.3148E-12  3.3157E-10
#      lat0       lon0       xBary       yBary       zBary        JD0
   -0.352118   47.210517   -0.125217   -0.005884   -0.981501  2456978.797448
# Heliocentric elements and errors
Epoch:              2456970.5000  =  2014/11/09
Mean Anomaly:          256.24509 +/-     2.174
Argument of Peri:       94.44941 +/-     2.170
Long of Asc Node:       57.26868 +/-     0.004
Inclination:             2.00430 +/-     0.001
Eccentricity:         0.00561214 +/-    0.0008
Semi-Major Axis:     45.54556339 +/-    0.0030
Time of Perihelion: 2489327.9070 +/-     677.9
Perihelion:          45.28995539 +/-    0.0387
Aphelion:            45.80117139 +/-    0.0387
Period (y)              307.3812 +/-      0.03
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X           30.88648824 +/-    0.0008
Ecliptic Y           33.55593051 +/-    0.0009
Ecliptic Z           -0.27431537 +/-    0.0000
Ecliptic XDOT        -0.00188076 +/-    0.0000
Ecliptic YDOT         0.00171302 +/-    0.0000
Ecliptic ZDOT         0.00008778 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   45.60757478 +/-    0.0009
Geocenter to KBO     44.62690201 +/-    0.0012
# Hcoef:  7.90

The following table shows the complete astrometric record for 15VP168. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (15VP168) followed by the observatory code and reference code for the source of the astrometry.

2014 11  17.29667  02 59 23.837  +16 38 04.47  23.9r 15VP168   568  C~2nvy      
2014 11  17.40560  02 59 23.352  +16 38 02.22  24.4r 15VP168   568  C~2nvy      
2014 11  17.51968  02 59 22.822  +16 38 00.02  24.3r 15VP168   568  C~2nvy      
2014 11  23.41643  02 58 56.354  +16 36 11.16  24.5r 15VP168   568  C~2nvy      
2015 08  11.60566  03 08 33.008  +17 18 08.40  24.9w 15VP168   568  C~2nvy      
2015 09  06.63576  03 08 24.923  +17 17 35.62  25.4w 15VP168   568  C~2nvy      
2015 09  12.52541  03 08 15.118  +17 16 56.30  24.9w 15VP168   568  C~2nvy      
2015 10  07.46582  03 07 05.227  +17 12 16.00  24.8w 15VP168   568  C~2nvy      
2015 10  08.47003  03 07 01.577  +17 12 01.45  24.5w 15VP168   568  C~2nvy      
2015 10  08.52822  03 07 01.364  +17 12 00.64  24.7w 15VP168   568  C~2nvy      
2015 11  06.28626  03 04 59.790  +17 03 52.45  24.2r 15VP168   568  C~2nvy      
2015 11  06.34963  03 04 59.486  +17 03 51.29  24.3r 15VP168   568  C~2nvy      
2015 11  06.42017  03 04 59.165  +17 03 50.04  24.6r 15VP168   568  C~2nvy      
2015 11  06.48956  03 04 58.844  +17 03 48.64  24.4r 15VP168   568  C~2nvy      
2015 11  07.50772  03 04 54.166  +17 03 29.96  24.5w 15VP168   568  C~2nvy      
2015 11  17.27378  03 04 09.302  +17 00 29.45  24.6w 15VP168   568  C~2nvy      
2015 11  17.32308  03 04 09.054  +17 00 28.60  24.6w 15VP168   568  C~2nvy      
2015 12  06.40182  03 02 45.671  +16 54 54.29  24.7w 15VP168   568  C~2nvy      
2015 12  13.33636  03 02 18.548  +16 53 06.01  24.5w 15VP168   568  C~2nvy      
2015 12  13.39494  03 02 18.319  +16 53 05.18  24.5w 15VP168   568  C~2nvy      
2016 01  01.38920  03 01 18.438  +16 49 09.19  24.3w 15VP168   568  C~2nvy      
2016 01  02.35555  03 01 16.058  +16 48 59.75  24.9w 15VP168   568  C~2nvy      
2016 01  07.33598  03 01 04.936  +16 48 17.17  25.4w 15VP168   568  C~2nvy      
2016 02  03.22261  03 00 41.621  +16 47 01.43  24.6w 15VP168   568  C~2nvy      
2016 02  10.25584  03 00 46.275  +16 47 27.04  24.8w 15VP168   568  C~2nvy      
2016 09  07.55628  03 13 04.938  +17 38 42.17        15VP168   568  C~2nvy      
2016 09  26.61685  03 12 22.634  +17 35 57.68  24.6w 15VP168   568  C~2nvy      
2016 10  10.43169  03 11 36.260  +17 32 57.08  24.6w 15VP168   568  C~2nvy      
2016 10  10.49031  03 11 36.036  +17 32 56.20  24.7w 15VP168   568  C~2nvy      
2016 10  27.52577  03 10 25.769  +17 28 21.73  24.9w 15VP168   568  C~2nvy      
2016 11  03.55078  03 09 54.124  +17 26 17.90  25.0w 15VP168   568  C~2nvy      
2016 12  28.38756  03 06 09.244  +17 11 40.82  24.6w 15VP168   568  C~2nvy      
2016 12  29.35312  03 06 06.534  +17 11 30.49  24.8w 15VP168   568  C~2nvy      
2017 01  01.25010  03 05 58.835  +17 11 00.97  24.7w 15VP168   568  C~2nvy      
2017 01  02.36014  03 05 56.051  +17 10 50.50  24.7w 15VP168   568  C~2nvy      
2017 01  26.25322  03 05 20.816  +17 08 44.51  24.3w 15VP168   568  C~2nvy      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.08       0.00     0.30
     2   0.0003     -7.32     0.10      -0.19     0.01
     3   0.0006    -15.25     0.03      -0.16    -0.03
     4   0.0168   -410.95    -0.07       2.81    -0.03
     5   0.7319   8240.74     0.00     132.13    -0.07
     6   0.8031   8120.21     0.17     131.94    -0.08
     7   0.8192   7974.16    -0.07     132.16    -0.02
     8   0.8875   6933.06    -0.04     134.66    -0.07
     9   0.8903   6878.72    -0.09     134.92     0.01
    10   0.8904   6875.55    -0.01     134.97     0.03
    11   0.9692   5064.27     0.01     142.88     0.00
    12   0.9693   5059.75    -0.13     142.97     0.04
    13   0.9695   5054.98    -0.01     143.03     0.04
    14   0.9697   5050.17    -0.01     142.95    -0.08
    15   0.9725   4980.49    -0.05     143.46     0.03
    16   0.9993   4311.88     0.26     147.40    -0.17
    17   0.9994   4308.23     0.01     147.57    -0.05
    18   1.0516   3065.70     0.10     157.85    -0.02
    19   1.0706   2661.59    -0.06     162.15    -0.04
    20   1.0708   2658.20    -0.12     162.26     0.03
    21   1.1228   1766.75     0.06     175.58     0.14
    22   1.1254   1731.30    -0.02     176.08    -0.08
    23   1.1391   1566.05    -0.07     179.90    -0.02
    24   1.2127   1223.42     0.14     201.01    -0.13
    25   1.2319   1294.76    -0.05     206.85     0.08
    26   1.8077  12330.05    -0.01     278.52     0.11
    27   1.8599  11701.18    -0.09     280.50    -0.02
    28   1.8977  11011.80    -0.01     283.11     0.06
    29   1.8979  11008.47    -0.01     283.12     0.03
    30   1.9445   9963.82     0.17     287.72    -0.07
    31   1.9637   9493.34     0.01     290.14    -0.13
    32   2.1139   6150.99     0.04     320.06     0.08
    33   2.1165   6110.78    -0.05     320.76     0.12
    34   2.1244   5996.49    -0.10     322.58    -0.03
    35   2.1275   5955.21     0.05     323.45     0.03
    36   2.1929   5434.64    -0.02     340.86     0.04

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.

15VP168    quality flag:3

Type:      CLASSICAL CLASSICAL CLASSICAL

axisobj        45.894    45.903    45.885
ecceobj         0.006     0.006     0.006
incobj          1.999     1.999     1.999
qmin           44.513    44.522    44.470
qmax           46.713    46.765    46.697
amean          45.551    45.560    45.542
amin           45.198    45.206    45.189
amax           45.905    45.912    45.888
emean           0.008     0.008     0.008
emin            0.000     0.000     0.000
emax            0.018     0.019     0.018
imean           1.228     1.228     1.227
imin            0.820     0.821     0.817
imax            1.600     1.601     1.601
excite_mean     0.023     0.023     0.023
fracstop        1.000     1.000     1.000
cjmean          3.120     3.120     3.120

libcent 0      -180.0    -180.0    -180.0
libamp  0      -180.0    -180.0    -180.0
libcent 1      -180.0    -180.0    -180.0
libamp  1      -180.0    -180.0    -180.0
libcent 2      -180.0    -180.0    -180.0
libamp  2      -180.0    -180.0    -180.0
libcent 3      -180.0    -180.0    -180.0
libamp  3      -180.0    -180.0    -180.0
libcent 4      -180.0    -180.0    -180.0
libamp  4      -180.0    -180.0    -180.0

kozaimean       160.5     160.8     160.2
kozaiamp        180.0     180.0     179.9