The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16EA367 # Created Wed Nov 27 02:10:35 2024 # Orbit generated from Bernstein formalism # Fitting 11 observations of 11 # Arc: 24.15d # First observation: 2016/02/12 # Last observation: 2016/03/07 Preliminary a, adot, b, bdot, g, gdot: -0.000000 0.034399 0.000001 -0.016690 0.030037 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 1.86 DOF: 17 RMS: 0.07 # Min/Max residuals: -0.17 0.20 # Exact a, adot, b, bdot, g, gdot: 1.448849E-05 2.670048E-02 -8.446530E-06 -1.638465E-02 2.883933E-02 -4.084453E-03 # Covariance matrix: 2.3088E-12 3.3044E-09 1.8756E-14 -1.2794E-10 5.0954E-10 -1.9085E-08 3.3044E-09 6.0043E-06 3.4204E-11 -2.3051E-07 9.2141E-07 -3.6083E-05 1.8756E-14 3.4204E-11 4.7633E-13 -8.9999E-12 5.2238E-12 -2.2204E-10 -1.2794E-10 -2.3051E-07 -8.9999E-12 9.1314E-09 -3.5550E-08 1.2717E-06 5.0954E-10 9.2141E-07 5.2238E-12 -3.5550E-08 1.4168E-07 -5.3541E-06 -1.9085E-08 -3.6083E-05 -2.2204E-10 1.2717E-06 -5.3541E-06 3.3638E-04 # lat0 lon0 xBary yBary zBary JD0 -11.625944 141.327249 -0.020934 -0.198302 -0.964739 2457430.780199 # Heliocentric elements and errors Epoch: 2457430.5000 = 2016/02/12 Mean Anomaly: 311.10732 +/- 34.239 Argument of Peri: 265.39114 +/- 74.790 Long of Asc Node: 303.59014 +/- 1.516 Inclination: 33.21805 +/- 2.177 Eccentricity: 0.15853263 +/- 0.6024 Semi-Major Axis: 39.06338411 +/- 10.5003 Time of Perihelion: 2469541.9065 +/- 6934.7 Perihelion: 32.87056301 +/- 25.1349 Aphelion: 45.25620520 +/- 26.4893 Period (y) 244.1535 +/- 98.44 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -27.30228633 +/- 0.3461 Ecliptic Y 21.81978039 +/- 0.2770 Ecliptic Z -6.98803607 +/- 0.0912 Ecliptic XDOT -0.00104306 +/- 0.0012 Ecliptic YDOT -0.00241916 +/- 0.0012 Ecliptic ZDOT -0.00144540 +/- 0.0004 # Distances at JD0 (AU) Heliocenter to KBO 35.64197390 +/- 0.3152 Geocenter to KBO 34.67486574 +/- 0.4526 # Hcoef: 8.41
The following table shows the complete astrometric record for 16EA367. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EA367) followed by the observatory code and reference code for the source of the astrometry.
2016 02 12.27941 09 19 59.59 +03 21 27.4 23.2y 16EA367 T09 C~89TC 2016 02 12.29636 09 19 59.49 +03 21 27.9 23.3y 16EA367 T09 C~89TC 2016 02 12.30179 09 19 59.46 +03 21 28.0 23.7y 16EA367 T09 C~89TC 2016 03 04.36972 09 18 02.75 +03 29 04.7 23.7i 16EA367 T09 C~89TC 2016 03 04.38346 09 18 02.68 +03 29 05.0 23.6i 16EA367 T09 C~89TC 2016 03 04.40242 09 18 02.58 +03 29 05.5 23.7i 16EA367 T09 C~89TC 2016 03 04.41599 09 18 02.51 +03 29 05.8 23.6i 16EA367 T09 C~89TC 2016 03 07.34213 09 17 47.75 +03 30 15.0 24.7g 16EA367 T09 C~89TC 2016 03 07.36623 09 17 47.64 +03 30 15.5 24.5g 16EA367 T09 C~89TC 2016 03 07.39772 09 17 47.49 +03 30 16.1 24.4g 16EA367 T09 C~89TC 2016 03 07.42573 09 17 47.33 +03 30 16.8 24.6g 16EA367 T09 C~89TC
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.03 0.00 -0.11 2 0.0000 -1.58 -0.03 0.01 0.05 3 0.0001 -2.04 -0.00 -0.04 0.06 4 0.0577 -1805.00 -0.01 -109.18 -0.02 5 0.0578 -1806.09 0.02 -109.22 -0.03 6 0.0578 -1807.67 -0.01 -109.21 0.02 7 0.0579 -1808.76 0.01 -109.25 0.00 8 0.0659 -2040.33 -0.17 -112.11 0.08 9 0.0659 -2042.05 0.03 -112.15 0.06 10 0.0660 -2044.38 0.20 -112.27 -0.03 11 0.0661 -2046.87 -0.07 -112.35 -0.08
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.