Orbit Fit and Astrometric record for 16EB391

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16EB391   
# Created Wed Nov 27 02:10:35 2024
# Orbit generated from Bernstein formalism
# Fitting     20 observations of     20
# Arc:   5.18d
# First observation: 2016/03/07
#  Last observation: 2016/03/12
Preliminary a, adot, b, bdot, g, gdot:
   0.000000   0.012986   0.000000   0.010705   0.022793   0.000000
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# WARNING Fitting with energy constraint
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# Chi-squared of fit:    12.46 DOF:     35 RMS:  0.14
# Min/Max residuals:    -0.33    0.34
# Exact a, adot, b, bdot, g, gdot:
  1.376594E-05  2.044754E-02  7.108992E-06  1.033135E-02  2.404414E-02 -6.998232E-03
# Covariance matrix:
  4.1339E-11  6.0537E-08 -1.5088E-12 -3.0718E-09  1.0085E-08  7.2613E-08
  6.0537E-08  8.9067E-05 -2.2191E-09 -4.5185E-06  1.4833E-05  1.0588E-04
 -1.5088E-12 -2.2191E-09  2.2775E-13  9.8609E-11 -3.6959E-10 -2.7131E-09
 -3.0718E-09 -4.5185E-06  9.8609E-11  2.3121E-07 -7.5251E-07 -5.3211E-06
  1.0085E-08  1.4833E-05 -3.6959E-10 -7.5251E-07  2.4704E-06  1.7720E-05
  7.2613E-08  1.0588E-04 -2.7131E-09 -5.3211E-06  1.7720E-05  4.2317E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
   -9.122835  150.860128   -0.271184   -0.150673   -0.939349  2457454.799569
# Heliocentric elements and errors
Epoch:              2457450.5000  =  2016/03/03
Mean Anomaly:          300.88691 +/-    68.439
Argument of Peri:       73.44453 +/-   101.943
Long of Asc Node:      168.29824 +/-     8.120
Inclination:            28.13885 +/-    11.005
Eccentricity:         0.29431961 +/-    0.8711
Semi-Major Axis:     45.93650817 +/-   23.5062
Time of Perihelion: 2476123.6047 +/-   16185.1
Perihelion:          32.41649281 +/-   43.3184
Aphelion:            59.45652352 +/-   50.2691
Period (y)              311.3473 +/-    238.98
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -36.83384633 +/-    2.3445
Ecliptic Y           20.21994075 +/-    1.3073
Ecliptic Z           -6.59390297 +/-    0.4310
Ecliptic XDOT        -0.00060960 +/-    0.0023
Ecliptic YDOT        -0.00233291 +/-    0.0010
Ecliptic ZDOT         0.00128788 +/-    0.0005
# Distances at JD0 (AU)
Heliocenter to KBO   42.53302006 +/-    2.1244
Geocenter to KBO     41.59018096 +/-    2.7187
# Hcoef:  9.55

The following table shows the complete astrometric record for 16EB391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EB391) followed by the observatory code and reference code for the source of the astrometry.

2016 03  07.29878  09 58 45.13   +02 37 25.4   26.2g 16EB391   T09  C~8HEi      
2016 03  07.30953  09 58 45.09   +02 37 25.9   26.4g 16EB391   T09  C~8HEi      
2016 03  07.31343  09 58 45.08   +02 37 25.9   26.3g 16EB391   T09  C~8HEi      
2016 03  07.31730  09 58 45.06   +02 37 25.9   26.5g 16EB391   T09  C~8HEi      
2016 03  07.32114  09 58 45.03   +02 37 26.3   26.5g 16EB391   T09  C~8HEi      
2016 03  07.32886  09 58 44.99   +02 37 26.3   26.0g 16EB391   T09  C~8HEi      
2016 03  09.28942  09 58 36.74   +02 38 32.4   26.2r 16EB391   T09  C~8HEi      
2016 03  09.30973  09 58 36.67   +02 38 33.2   25.8r 16EB391   T09  C~8HEi      
2016 03  09.32455  09 58 36.62   +02 38 33.9   26.0r 16EB391   T09  C~8HEi      
2016 03  09.32844  09 58 36.58   +02 38 33.9   26.7r 16EB391   T09  C~8HEi      
2016 03  09.33236  09 58 36.54   +02 38 34.2   26.3r 16EB391   T09  C~8HEi      
2016 03  12.43918  09 58 23.73   +02 40 19.1   25.3z 16EB391   T09  C~8HEi      
2016 03  12.44304  09 58 23.72   +02 40 19.0   24.8z 16EB391   T09  C~8HEi      
2016 03  12.44690  09 58 23.71   +02 40 19.1   25.3z 16EB391   T09  C~8HEi      
2016 03  12.45461  09 58 23.67   +02 40 19.5   25.2z 16EB391   T09  C~8HEi      
2016 03  12.45847  09 58 23.66   +02 40 19.6   25.2z 16EB391   T09  C~8HEi      
2016 03  12.46234  09 58 23.64   +02 40 20.0   25.5z 16EB391   T09  C~8HEi      
2016 03  12.46618  09 58 23.63   +02 40 20.0   25.9z 16EB391   T09  C~8HEi      
2016 03  12.47004  09 58 23.60   +02 40 20.0   24.8z 16EB391   T09  C~8HEi      
2016 03  12.47390  09 58 23.58   +02 40 20.1   25.8z 16EB391   T09  C~8HEi      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.07       0.00    -0.06
     2   0.0000     -0.74    -0.02       0.26     0.10
     3   0.0000     -0.88     0.12       0.21     0.01
     4   0.0001     -1.16     0.12       0.10    -0.13
     5   0.0001     -1.72    -0.16       0.32     0.06
     6   0.0001     -2.28    -0.17       0.11    -0.22
     7   0.0055   -141.17     0.03      19.10    -0.13
     8   0.0055   -142.43     0.22      19.48     0.06
     9   0.0055   -143.38     0.34      19.88     0.32
    10   0.0056   -143.94     0.05      19.67     0.07
    11   0.0056   -144.61    -0.33      19.74     0.11
    12   0.0141   -361.05    -0.11      51.35     0.06
    13   0.0141   -361.16     0.05      51.20    -0.12
    14   0.0141   -361.33     0.15      51.24    -0.12
    15   0.0141   -362.03    -0.02      51.41    -0.03
    16   0.0141   -362.21     0.08      51.45    -0.03
    17   0.0141   -362.63    -0.07      51.72     0.20
    18   0.0141   -362.77     0.06      51.67     0.11
    19   0.0142   -363.19    -0.10      51.51    -0.09
    20   0.0142   -363.50    -0.14      51.50    -0.14

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.