The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16EB391 # Created Wed Nov 27 02:10:35 2024 # Orbit generated from Bernstein formalism # Fitting 20 observations of 20 # Arc: 5.18d # First observation: 2016/03/07 # Last observation: 2016/03/12 Preliminary a, adot, b, bdot, g, gdot: 0.000000 0.012986 0.000000 0.010705 0.022793 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # Chi-squared of fit: 12.46 DOF: 35 RMS: 0.14 # Min/Max residuals: -0.33 0.34 # Exact a, adot, b, bdot, g, gdot: 1.376594E-05 2.044754E-02 7.108992E-06 1.033135E-02 2.404414E-02 -6.998232E-03 # Covariance matrix: 4.1339E-11 6.0537E-08 -1.5088E-12 -3.0718E-09 1.0085E-08 7.2613E-08 6.0537E-08 8.9067E-05 -2.2191E-09 -4.5185E-06 1.4833E-05 1.0588E-04 -1.5088E-12 -2.2191E-09 2.2775E-13 9.8609E-11 -3.6959E-10 -2.7131E-09 -3.0718E-09 -4.5185E-06 9.8609E-11 2.3121E-07 -7.5251E-07 -5.3211E-06 1.0085E-08 1.4833E-05 -3.6959E-10 -7.5251E-07 2.4704E-06 1.7720E-05 7.2613E-08 1.0588E-04 -2.7131E-09 -5.3211E-06 1.7720E-05 4.2317E-04 # lat0 lon0 xBary yBary zBary JD0 -9.122835 150.860128 -0.271184 -0.150673 -0.939349 2457454.799569 # Heliocentric elements and errors Epoch: 2457450.5000 = 2016/03/03 Mean Anomaly: 300.88691 +/- 68.439 Argument of Peri: 73.44453 +/- 101.943 Long of Asc Node: 168.29824 +/- 8.120 Inclination: 28.13885 +/- 11.005 Eccentricity: 0.29431961 +/- 0.8711 Semi-Major Axis: 45.93650817 +/- 23.5062 Time of Perihelion: 2476123.6047 +/- 16185.1 Perihelion: 32.41649281 +/- 43.3184 Aphelion: 59.45652352 +/- 50.2691 Period (y) 311.3473 +/- 238.98 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -36.83384633 +/- 2.3445 Ecliptic Y 20.21994075 +/- 1.3073 Ecliptic Z -6.59390297 +/- 0.4310 Ecliptic XDOT -0.00060960 +/- 0.0023 Ecliptic YDOT -0.00233291 +/- 0.0010 Ecliptic ZDOT 0.00128788 +/- 0.0005 # Distances at JD0 (AU) Heliocenter to KBO 42.53302006 +/- 2.1244 Geocenter to KBO 41.59018096 +/- 2.7187 # Hcoef: 9.55
The following table shows the complete astrometric record for 16EB391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EB391) followed by the observatory code and reference code for the source of the astrometry.
2016 03 07.29878 09 58 45.13 +02 37 25.4 26.2g 16EB391 T09 C~8HEi 2016 03 07.30953 09 58 45.09 +02 37 25.9 26.4g 16EB391 T09 C~8HEi 2016 03 07.31343 09 58 45.08 +02 37 25.9 26.3g 16EB391 T09 C~8HEi 2016 03 07.31730 09 58 45.06 +02 37 25.9 26.5g 16EB391 T09 C~8HEi 2016 03 07.32114 09 58 45.03 +02 37 26.3 26.5g 16EB391 T09 C~8HEi 2016 03 07.32886 09 58 44.99 +02 37 26.3 26.0g 16EB391 T09 C~8HEi 2016 03 09.28942 09 58 36.74 +02 38 32.4 26.2r 16EB391 T09 C~8HEi 2016 03 09.30973 09 58 36.67 +02 38 33.2 25.8r 16EB391 T09 C~8HEi 2016 03 09.32455 09 58 36.62 +02 38 33.9 26.0r 16EB391 T09 C~8HEi 2016 03 09.32844 09 58 36.58 +02 38 33.9 26.7r 16EB391 T09 C~8HEi 2016 03 09.33236 09 58 36.54 +02 38 34.2 26.3r 16EB391 T09 C~8HEi 2016 03 12.43918 09 58 23.73 +02 40 19.1 25.3z 16EB391 T09 C~8HEi 2016 03 12.44304 09 58 23.72 +02 40 19.0 24.8z 16EB391 T09 C~8HEi 2016 03 12.44690 09 58 23.71 +02 40 19.1 25.3z 16EB391 T09 C~8HEi 2016 03 12.45461 09 58 23.67 +02 40 19.5 25.2z 16EB391 T09 C~8HEi 2016 03 12.45847 09 58 23.66 +02 40 19.6 25.2z 16EB391 T09 C~8HEi 2016 03 12.46234 09 58 23.64 +02 40 20.0 25.5z 16EB391 T09 C~8HEi 2016 03 12.46618 09 58 23.63 +02 40 20.0 25.9z 16EB391 T09 C~8HEi 2016 03 12.47004 09 58 23.60 +02 40 20.0 24.8z 16EB391 T09 C~8HEi 2016 03 12.47390 09 58 23.58 +02 40 20.1 25.8z 16EB391 T09 C~8HEi
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.07 0.00 -0.06 2 0.0000 -0.74 -0.02 0.26 0.10 3 0.0000 -0.88 0.12 0.21 0.01 4 0.0001 -1.16 0.12 0.10 -0.13 5 0.0001 -1.72 -0.16 0.32 0.06 6 0.0001 -2.28 -0.17 0.11 -0.22 7 0.0055 -141.17 0.03 19.10 -0.13 8 0.0055 -142.43 0.22 19.48 0.06 9 0.0055 -143.38 0.34 19.88 0.32 10 0.0056 -143.94 0.05 19.67 0.07 11 0.0056 -144.61 -0.33 19.74 0.11 12 0.0141 -361.05 -0.11 51.35 0.06 13 0.0141 -361.16 0.05 51.20 -0.12 14 0.0141 -361.33 0.15 51.24 -0.12 15 0.0141 -362.03 -0.02 51.41 -0.03 16 0.0141 -362.21 0.08 51.45 -0.03 17 0.0141 -362.63 -0.07 51.72 0.20 18 0.0141 -362.77 0.06 51.67 0.11 19 0.0142 -363.19 -0.10 51.51 -0.09 20 0.0142 -363.50 -0.14 51.50 -0.14
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.