The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16EC391 # Created Fri Jan 24 02:11:08 2025 # Orbit generated from Bernstein formalism # Fitting 14 observations of 14 # Arc: 8.03d # First observation: 2016/03/04 # Last observation: 2016/03/12 Preliminary a, adot, b, bdot, g, gdot: 0.000000 0.025773 0.000000 0.016946 0.026739 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # Chi-squared of fit: 4.44 DOF: 23 RMS: 0.10 # Min/Max residuals: -0.12 0.25 # Exact a, adot, b, bdot, g, gdot: 1.344537E-05 2.159905E-02 1.087754E-05 1.756633E-02 2.603447E-02 3.830684E-03 # Covariance matrix: 5.7076E-12 8.6996E-09 -6.0372E-13 -1.2331E-09 1.5318E-09 -1.7699E-08 8.6996E-09 1.3752E-05 -9.5256E-10 -1.9473E-06 2.4177E-06 -2.9395E-05 -6.0372E-13 -9.5256E-10 2.5462E-13 1.2447E-10 -1.6755E-10 1.8776E-09 -1.2331E-09 -1.9473E-06 1.2447E-10 2.7711E-07 -3.4230E-07 4.3302E-06 1.5318E-09 2.4177E-06 -1.6755E-10 -3.4230E-07 4.2517E-07 -4.9870E-06 -1.7699E-08 -2.9395E-05 1.8776E-09 4.3302E-06 -4.9870E-06 4.8233E-04 # lat0 lon0 xBary yBary zBary JD0 -16.491526 140.245399 -0.393421 -0.257288 -0.869672 2457451.739619 # Heliocentric elements and errors Epoch: 2457450.5000 = 2016/03/03 Mean Anomaly: 33.51603 +/- 85.143 Argument of Peri: 284.50879 +/- 162.678 Long of Asc Node: 159.63367 +/- 3.533 Inclination: 41.89763 +/- 5.159 Eccentricity: 0.21708103 +/- 0.6562 Semi-Major Axis: 46.86790530 +/- 12.7141 Time of Perihelion: 2446539.5692 +/- 27359.9 Perihelion: 36.69377234 +/- 32.3277 Aphelion: 57.04203825 +/- 34.4302 Period (y) 320.8644 +/- 130.56 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -29.26793854 +/- 0.7091 Ecliptic Y 23.82847412 +/- 0.5900 Ecliptic Z -10.90336695 +/- 0.2731 Ecliptic XDOT -0.00215286 +/- 0.0016 Ecliptic YDOT -0.00117084 +/- 0.0015 Ecliptic ZDOT 0.00165698 +/- 0.0006 # Distances at JD0 (AU) Heliocenter to KBO 39.28475297 +/- 0.6426 Geocenter to KBO 38.41061429 +/- 0.9620 # Hcoef: 8.16
The following table shows the complete astrometric record for 16EC391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EC391) followed by the observatory code and reference code for the source of the astrometry.
2016 03 04.23883 09 09 59.74 -00 56 50.7 24.2i 16EC391 T09 C~8HEi 2016 03 04.25126 09 09 59.70 -00 56 50.2 23.9i 16EC391 T09 C~8HEi 2016 03 04.25395 09 09 59.67 -00 56 50.1 23.5i 16EC391 T09 C~8HEi 2016 03 04.26744 09 09 59.62 -00 56 49.4 23.9i 16EC391 T09 C~8HEi 2016 03 04.28093 09 09 59.57 -00 56 48.9 23.7i 16EC391 T09 C~8HEi 2016 03 04.32261 09 09 59.39 -00 56 47.2 23.5i 16EC391 T09 C~8HEi 2016 03 04.32805 09 09 59.35 -00 56 47.0 23.6i 16EC391 T09 C~8HEi 2016 03 09.23801 09 09 39.08 -00 53 20.0 23.8r 16EC391 T09 C~8HEi 2016 03 09.24797 09 09 39.06 -00 53 19.4 24.5r 16EC391 T09 C~8HEi 2016 03 09.25015 09 09 39.03 -00 53 19.5 24.2r 16EC391 T09 C~8HEi 2016 03 09.28237 09 09 38.90 -00 53 18.2 24.2r 16EC391 T09 C~8HEi 2016 03 12.23749 09 09 27.40 -00 51 12.0 24.2z 16EC391 T09 C~8HEi 2016 03 12.24703 09 09 27.35 -00 51 11.7 23.6z 16EC391 T09 C~8HEi 2016 03 12.27134 09 09 27.25 -00 51 10.5 24.2z 16EC391 T09 C~8HEi
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.07 0.00 -0.04 2 0.0000 -0.72 0.14 0.29 0.00 3 0.0000 -1.18 -0.12 0.25 -0.09 4 0.0001 -2.11 -0.04 0.69 0.08 5 0.0001 -2.98 0.10 0.93 0.06 6 0.0002 -6.07 0.13 1.73 0.03 7 0.0002 -6.70 -0.10 1.73 -0.07 8 0.0137 -359.46 -0.09 105.83 -0.01 9 0.0137 -359.92 0.15 106.31 0.25 10 0.0137 -360.32 -0.09 106.08 -0.03 11 0.0138 -362.58 -0.06 106.72 -0.09 12 0.0219 -565.39 0.16 174.11 0.04 13 0.0219 -566.20 0.01 174.17 -0.12 14 0.0220 -567.99 -0.12 174.85 0.00
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.
16EC391 quality flag:0 Type: ERR2LARGE ERR2LARGE ERR2LARGE axisobj 0.000 0.000 0.000 ecceobj -1.000 -1.000 -1.000 incobj -1.000 -1.000 -1.000 qmin 0.000 0.000 0.000 qmax 0.000 0.000 0.000 amean 0.000 0.000 0.000 amin 0.000 0.000 0.000 amax 0.000 0.000 0.000 emean 0.000 0.000 0.000 emin 0.000 0.000 0.000 emax 0.000 0.000 0.000 imean 0.000 0.000 0.000 imin 0.000 0.000 0.000 imax 0.000 0.000 0.000 excite_mean 0.000 0.000 0.000 fracstop 0.000 0.000 0.000 cjmean 0.000 0.000 0.000 libcent 0 -180.0 -180.0 -180.0 libamp 0 -180.0 -180.0 -180.0 libcent 1 -180.0 -180.0 -180.0 libamp 1 -180.0 -180.0 -180.0 libcent 2 -180.0 -180.0 -180.0 libamp 2 -180.0 -180.0 -180.0 libcent 3 -180.0 -180.0 -180.0 libamp 3 -180.0 -180.0 -180.0 libcent 4 -180.0 -180.0 -180.0 libamp 4 -180.0 -180.0 -180.0 kozaimean 0.0 0.0 0.0 kozaiamp 0.0 0.0 0.0