The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16ED391 # Created Wed Nov 27 02:10:35 2024 # Orbit generated from Bernstein formalism # Fitting 11 observations of 11 # Arc: 8.04d # First observation: 2016/03/04 # Last observation: 2016/03/12 Preliminary a, adot, b, bdot, g, gdot: 0.000001 0.037369 -0.000000 0.003527 0.027437 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # Chi-squared of fit: 3.39 DOF: 17 RMS: 0.10 # Min/Max residuals: -0.21 0.12 # Exact a, adot, b, bdot, g, gdot: 1.970711E-05 3.209705E-02 2.206066E-06 4.323231E-03 2.653177E-02 1.813633E-03 # Covariance matrix: 5.2111E-12 7.8482E-09 -5.5525E-13 -1.1663E-09 1.3974E-09 -6.1961E-09 7.8482E-09 1.2496E-05 -8.8210E-10 -1.8535E-06 2.2203E-06 -1.0570E-05 -5.5525E-13 -8.8210E-10 3.2489E-13 1.1680E-10 -1.5679E-10 6.6946E-10 -1.1663E-09 -1.8535E-06 1.1680E-10 2.7651E-07 -3.2937E-07 1.6046E-06 1.3974E-09 2.2203E-06 -1.5679E-10 -3.2937E-07 3.9460E-07 -1.7944E-06 -6.1961E-09 -1.0570E-05 6.6946E-10 1.6046E-06 -1.7944E-06 2.0981E-04 # lat0 lon0 xBary yBary zBary JD0 -16.742985 139.518139 -0.404845 -0.259649 -0.863705 2457451.736149 # Heliocentric elements and errors Epoch: 2457450.5000 = 2016/03/03 Mean Anomaly: 3.82251 +/- 25.304 Argument of Peri: 282.93148 +/- 78.688 Long of Asc Node: 204.21174 +/- 5.042 Inclination: 18.07381 +/- 0.731 Eccentricity: 0.46797810 +/- 0.2126 Semi-Major Axis: 71.98087730 +/- 25.7493 Time of Perihelion: 2455082.0147 +/- 15627.0 Perihelion: 38.29540337 +/- 20.5412 Aphelion: 105.66635123 +/- 40.7807 Period (y) 610.7084 +/- 327.70 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -28.40570898 +/- 0.6499 Ecliptic Y 23.70692041 +/- 0.5548 Ecliptic Z -10.85782147 +/- 0.2571 Ecliptic XDOT -0.00238450 +/- 0.0011 Ecliptic YDOT -0.00232645 +/- 0.0010 Ecliptic ZDOT 0.00037330 +/- 0.0004 # Distances at JD0 (AU) Heliocenter to KBO 38.55897645 +/- 0.5923 Geocenter to KBO 37.69066465 +/- 0.8924 # Hcoef: 8.46
The following table shows the complete astrometric record for 16ED391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16ED391) followed by the observatory code and reference code for the source of the astrometry.
2016 03 04.23536 09 07 02.03 -00 58 29.8 24.0i 16ED391 T09 C~8HEi 2016 03 04.25126 09 07 01.97 -00 58 29.6 24.2i 16ED391 T09 C~8HEi 2016 03 04.26474 09 07 01.91 -00 58 28.8 24.3i 16ED391 T09 C~8HEi 2016 03 04.28093 09 07 01.85 -00 58 28.4 24.2i 16ED391 T09 C~8HEi 2016 03 04.31992 09 07 01.69 -00 58 27.1 23.8i 16ED391 T09 C~8HEi 2016 03 09.23515 09 06 42.17 -00 55 39.8 24.3r 16ED391 T09 C~8HEi 2016 03 09.26092 09 06 42.08 -00 55 39.0 24.2r 16ED391 T09 C~8HEi 2016 03 09.28024 09 06 42.00 -00 55 38.3 24.5r 16ED391 T09 C~8HEi 2016 03 12.23407 09 06 30.99 -00 53 56.2 24.5z 16ED391 T09 C~8HEi 2016 03 12.25783 09 06 30.91 -00 53 55.3 23.9z 16ED391 T09 C~8HEi 2016 03 12.27134 09 06 30.86 -00 53 55.0 23.8z 16ED391 T09 C~8HEi
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.12 0.00 0.08 2 0.0000 -0.92 0.07 -0.08 -0.21 3 0.0001 -2.02 -0.08 0.41 0.10 4 0.0001 -3.00 0.07 0.52 0.00 5 0.0002 -5.68 0.12 1.03 0.01 6 0.0137 -335.34 -0.15 71.89 0.04 7 0.0138 -336.87 0.02 72.25 0.00 8 0.0138 -338.22 -0.05 72.55 0.02 9 0.0219 -526.51 -0.04 119.89 -0.03 10 0.0220 -527.92 0.05 120.39 0.08 11 0.0220 -528.73 0.10 120.45 -0.08
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.