Orbit Fit and Astrometric record for 16ED391

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16ED391   
# Created Wed Nov 27 02:10:35 2024
# Orbit generated from Bernstein formalism
# Fitting     11 observations of     11
# Arc:   8.04d
# First observation: 2016/03/04
#  Last observation: 2016/03/12
Preliminary a, adot, b, bdot, g, gdot:
   0.000001   0.037369  -0.000000   0.003527   0.027437   0.000000
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# WARNING Fitting with energy constraint
# Chi-squared of fit:     3.39 DOF:     17 RMS:  0.10
# Min/Max residuals:    -0.21    0.12
# Exact a, adot, b, bdot, g, gdot:
  1.970711E-05  3.209705E-02  2.206066E-06  4.323231E-03  2.653177E-02  1.813633E-03
# Covariance matrix:
  5.2111E-12  7.8482E-09 -5.5525E-13 -1.1663E-09  1.3974E-09 -6.1961E-09
  7.8482E-09  1.2496E-05 -8.8210E-10 -1.8535E-06  2.2203E-06 -1.0570E-05
 -5.5525E-13 -8.8210E-10  3.2489E-13  1.1680E-10 -1.5679E-10  6.6946E-10
 -1.1663E-09 -1.8535E-06  1.1680E-10  2.7651E-07 -3.2937E-07  1.6046E-06
  1.3974E-09  2.2203E-06 -1.5679E-10 -3.2937E-07  3.9460E-07 -1.7944E-06
 -6.1961E-09 -1.0570E-05  6.6946E-10  1.6046E-06 -1.7944E-06  2.0981E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
  -16.742985  139.518139   -0.404845   -0.259649   -0.863705  2457451.736149
# Heliocentric elements and errors
Epoch:              2457450.5000  =  2016/03/03
Mean Anomaly:            3.82251 +/-    25.304
Argument of Peri:      282.93148 +/-    78.688
Long of Asc Node:      204.21174 +/-     5.042
Inclination:            18.07381 +/-     0.731
Eccentricity:         0.46797810 +/-    0.2126
Semi-Major Axis:     71.98087730 +/-   25.7493
Time of Perihelion: 2455082.0147 +/-   15627.0
Perihelion:          38.29540337 +/-   20.5412
Aphelion:           105.66635123 +/-   40.7807
Period (y)              610.7084 +/-    327.70
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -28.40570898 +/-    0.6499
Ecliptic Y           23.70692041 +/-    0.5548
Ecliptic Z          -10.85782147 +/-    0.2571
Ecliptic XDOT        -0.00238450 +/-    0.0011
Ecliptic YDOT        -0.00232645 +/-    0.0010
Ecliptic ZDOT         0.00037330 +/-    0.0004
# Distances at JD0 (AU)
Heliocenter to KBO   38.55897645 +/-    0.5923
Geocenter to KBO     37.69066465 +/-    0.8924
# Hcoef:  8.46

The following table shows the complete astrometric record for 16ED391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16ED391) followed by the observatory code and reference code for the source of the astrometry.

2016 03  04.23536  09 07 02.03   -00 58 29.8   24.0i 16ED391   T09  C~8HEi      
2016 03  04.25126  09 07 01.97   -00 58 29.6   24.2i 16ED391   T09  C~8HEi      
2016 03  04.26474  09 07 01.91   -00 58 28.8   24.3i 16ED391   T09  C~8HEi      
2016 03  04.28093  09 07 01.85   -00 58 28.4   24.2i 16ED391   T09  C~8HEi      
2016 03  04.31992  09 07 01.69   -00 58 27.1   23.8i 16ED391   T09  C~8HEi      
2016 03  09.23515  09 06 42.17   -00 55 39.8   24.3r 16ED391   T09  C~8HEi      
2016 03  09.26092  09 06 42.08   -00 55 39.0   24.2r 16ED391   T09  C~8HEi      
2016 03  09.28024  09 06 42.00   -00 55 38.3   24.5r 16ED391   T09  C~8HEi      
2016 03  12.23407  09 06 30.99   -00 53 56.2   24.5z 16ED391   T09  C~8HEi      
2016 03  12.25783  09 06 30.91   -00 53 55.3   23.9z 16ED391   T09  C~8HEi      
2016 03  12.27134  09 06 30.86   -00 53 55.0   23.8z 16ED391   T09  C~8HEi      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.12       0.00     0.08
     2   0.0000     -0.92     0.07      -0.08    -0.21
     3   0.0001     -2.02    -0.08       0.41     0.10
     4   0.0001     -3.00     0.07       0.52     0.00
     5   0.0002     -5.68     0.12       1.03     0.01
     6   0.0137   -335.34    -0.15      71.89     0.04
     7   0.0138   -336.87     0.02      72.25     0.00
     8   0.0138   -338.22    -0.05      72.55     0.02
     9   0.0219   -526.51    -0.04     119.89    -0.03
    10   0.0220   -527.92     0.05     120.39     0.08
    11   0.0220   -528.73     0.10     120.45    -0.08

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.