The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16EE391 # Created Wed Nov 27 02:10:35 2024 # Orbit generated from Bernstein formalism # Fitting 17 observations of 17 # Arc: 8.02d # First observation: 2016/03/04 # Last observation: 2016/03/12 Preliminary a, adot, b, bdot, g, gdot: 0.000001 0.033950 0.000000 0.004176 0.027789 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # Chi-squared of fit: 7.26 DOF: 29 RMS: 0.12 # Min/Max residuals: -0.29 0.26 # Exact a, adot, b, bdot, g, gdot: 1.873653E-05 2.970637E-02 2.944611E-06 4.794038E-03 2.707043E-02 -2.207684E-03 # Covariance matrix: 3.5549E-12 5.2137E-09 -2.3530E-13 -7.4588E-10 9.2013E-10 -9.8148E-09 5.2137E-09 8.1323E-06 -3.6300E-10 -1.1612E-06 1.4303E-06 -1.8619E-05 -2.3530E-13 -3.6300E-10 2.0251E-13 4.0061E-11 -6.4029E-11 4.3021E-10 -7.4588E-10 -1.1612E-06 4.0061E-11 1.6723E-07 -2.0424E-07 2.7367E-06 9.2013E-10 1.4303E-06 -6.4029E-11 -2.0424E-07 2.5169E-07 -3.0903E-06 -9.8148E-09 -1.8619E-05 4.3021E-10 2.7367E-06 -3.0903E-06 4.7060E-04 # lat0 lon0 xBary yBary zBary JD0 -16.605233 140.219683 -0.393828 -0.258963 -0.868991 2457451.739619 # Heliocentric elements and errors Epoch: 2457450.5000 = 2016/03/03 Mean Anomaly: 345.89915 +/- 136.873 Argument of Peri: 320.73136 +/- 217.085 Long of Asc Node: 200.38235 +/- 4.298 Inclination: 18.63932 +/- 0.772 Eccentricity: 0.20379221 +/- 0.4001 Semi-Major Axis: 46.92852893 +/- 12.4480 Time of Perihelion: 2462049.8506 +/- 44607.0 Perihelion: 37.36486017 +/- 21.2329 Aphelion: 56.49219768 +/- 24.0239 Period (y) 321.4871 +/- 127.91 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -28.15818620 +/- 0.5041 Ecliptic Y 22.92579047 +/- 0.4198 Ecliptic Z -10.55666297 +/- 0.1956 Ecliptic XDOT -0.00186460 +/- 0.0016 Ecliptic YDOT -0.00236416 +/- 0.0014 Ecliptic ZDOT 0.00052846 +/- 0.0006 # Distances at JD0 (AU) Heliocenter to KBO 37.81426254 +/- 0.4568 Geocenter to KBO 36.94068154 +/- 0.6846 # Hcoef: 8.31
The following table shows the complete astrometric record for 16EE391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EE391) followed by the observatory code and reference code for the source of the astrometry.
2016 03 04.23883 09 09 45.76 -01 02 53.3 24.0i 16EE391 T09 C~8HEi 2016 03 04.25126 09 09 45.73 -01 02 52.9 23.5i 16EE391 T09 C~8HEi 2016 03 04.26744 09 09 45.65 -01 02 52.4 23.8i 16EE391 T09 C~8HEi 2016 03 04.28093 09 09 45.60 -01 02 51.9 23.3i 16EE391 T09 C~8HEi 2016 03 04.32261 09 09 45.42 -01 02 50.4 23.4i 16EE391 T09 C~8HEi 2016 03 04.32805 09 09 45.39 -01 02 50.2 23.4i 16EE391 T09 C~8HEi 2016 03 07.23850 09 09 33.04 -01 01 07.7 24.9g 16EE391 T09 C~8HEi 2016 03 07.24843 09 09 32.99 -01 01 07.4 25.0g 16EE391 T09 C~8HEi 2016 03 07.25054 09 09 32.97 -01 01 07.2 25.0g 16EE391 T09 C~8HEi 2016 03 07.26114 09 09 32.94 -01 01 06.9 25.2g 16EE391 T09 C~8HEi 2016 03 09.23801 09 09 24.84 -00 59 56.5 24.1r 16EE391 T09 C~8HEi 2016 03 09.24797 09 09 24.80 -00 59 56.0 24.4r 16EE391 T09 C~8HEi 2016 03 09.26092 09 09 24.73 -00 59 55.5 24.1r 16EE391 T09 C~8HEi 2016 03 09.28237 09 09 24.66 -00 59 54.8 24.0r 16EE391 T09 C~8HEi 2016 03 12.23749 09 09 12.98 -00 58 08.4 23.9z 16EE391 T09 C~8HEi 2016 03 12.24703 09 09 12.97 -00 58 08.1 23.9z 16EE391 T09 C~8HEi 2016 03 12.26052 09 09 12.89 -00 58 07.4 23.2z 16EE391 T09 C~8HEi
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.29 0.00 -0.03 2 0.0000 -0.55 0.08 0.24 0.05 3 0.0001 -1.85 -0.03 0.35 -0.05 4 0.0001 -2.71 0.10 0.60 0.02 5 0.0002 -5.74 0.14 1.20 0.08 6 0.0002 -6.23 0.05 1.25 0.06 7 0.0082 -213.92 0.05 42.21 -0.02 8 0.0082 -214.73 -0.05 42.27 -0.10 9 0.0082 -215.07 -0.25 42.37 -0.04 10 0.0083 -215.59 -0.01 42.52 -0.04 11 0.0137 -352.78 0.15 72.40 -0.09 12 0.0137 -353.51 0.12 72.69 0.05 13 0.0137 -354.66 -0.13 72.85 0.01 14 0.0138 -355.87 0.16 73.19 0.03 15 0.0219 -555.19 -0.15 120.93 -0.06 16 0.0219 -555.43 0.26 121.17 0.03 17 0.0220 -556.78 -0.19 121.47 0.11
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.