Orbit Fit and Astrometric record for 16EF391

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16EF391   
# Created Wed Nov 27 02:10:35 2024
# Orbit generated from Bernstein formalism
# Fitting     34 observations of     34
# Arc:  11.07d
# First observation: 2016/03/04
#  Last observation: 2016/03/15
Preliminary a, adot, b, bdot, g, gdot:
  -0.000001   0.018733   0.000000  -0.004279   0.021838   0.000000
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# WARNING Fitting with energy constraint
# Chi-squared of fit:    17.53 DOF:     63 RMS:  0.13
# Min/Max residuals:    -0.37    0.30
# Exact a, adot, b, bdot, g, gdot:
  1.085798E-05  1.567146E-02 -2.932274E-06 -4.132697E-03  2.134801E-02 -1.026559E-02
# Covariance matrix:
  4.1251E-12  4.3498E-09  2.2162E-13 -2.1329E-10  7.2092E-10 -5.0166E-10
  4.3498E-09  4.8516E-06  2.4699E-10 -2.3718E-07  8.0133E-07 -2.3034E-06
  2.2162E-13  2.4699E-10  1.9025E-13 -2.0985E-11  4.0791E-11 -1.3288E-10
 -2.1329E-10 -2.3718E-07 -2.0985E-11  1.2189E-08 -3.9186E-08  1.0382E-07
  7.2092E-10  8.0133E-07  4.0791E-11 -3.9186E-08  1.3240E-07 -3.3496E-07
 -5.0166E-10 -2.3034E-06 -1.3288E-10  1.0382E-07 -3.3496E-07  8.0476E-05
#      lat0       lon0       xBary       yBary       zBary        JD0
   -9.345050  152.087767   -0.202283   -0.156982   -0.954925  2457451.934399
# Heliocentric elements and errors
Epoch:              2457450.5000  =  2016/03/03
Mean Anomaly:          298.68168 +/-    96.461
Argument of Peri:      336.34803 +/-    27.892
Long of Asc Node:      300.82153 +/-     2.942
Inclination:            17.13649 +/-     1.358
Eccentricity:         0.53221389 +/-    0.3206
Semi-Major Axis:     47.01800844 +/-   24.0064
Time of Perihelion: 2477508.2653 +/-   27561.5
Perihelion:          21.99437120 +/-   18.7975
Aphelion:            72.04164568 +/-   39.7520
Period (y)              322.4071 +/-    246.92
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -41.79782556 +/-    0.6961
Ecliptic Y           21.90890771 +/-    0.3689
Ecliptic Z           -7.60644882 +/-    0.1297
Ecliptic XDOT         0.00028299 +/-    0.0010
Ecliptic YDOT        -0.00243142 +/-    0.0006
Ecliptic ZDOT        -0.00030919 +/-    0.0002
# Distances at JD0 (AU)
Heliocenter to KBO   47.80080044 +/-    0.6321
Geocenter to KBO     46.84276309 +/-    0.7984
# Hcoef:  7.99

The following table shows the complete astrometric record for 16EF391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EF391) followed by the observatory code and reference code for the source of the astrometry.

2016 03  04.43361  10 02 59.13   +01 59 30.2   24.2i 16EF391   T09  C~8HEi      
2016 03  04.46258  10 02 59.00   +01 59 30.9   24.0i 16EF391   T09  C~8HEi      
2016 03  04.46608  10 02 58.98   +01 59 31.1   24.0i 16EF391   T09  C~8HEi      
2016 03  07.28619  10 02 47.45   +02 00 37.1   25.8g 16EF391   T09  C~8HEi      
2016 03  07.30636  10 02 47.37   +02 00 37.5   25.4g 16EF391   T09  C~8HEi      
2016 03  07.30953  10 02 47.36   +02 00 37.5   25.9g 16EF391   T09  C~8HEi      
2016 03  07.31343  10 02 47.34   +02 00 37.6   26.0g 16EF391   T09  C~8HEi      
2016 03  07.31730  10 02 47.33   +02 00 37.8   26.1g 16EF391   T09  C~8HEi      
2016 03  07.32114  10 02 47.32   +02 00 38.0   25.9g 16EF391   T09  C~8HEi      
2016 03  07.32886  10 02 47.30   +02 00 38.0   25.7g 16EF391   T09  C~8HEi      
2016 03  09.29704  10 02 39.36   +02 01 24.7   24.8r 16EF391   T09  C~8HEi      
2016 03  09.30726  10 02 39.32   +02 01 24.9   25.0r 16EF391   T09  C~8HEi      
2016 03  09.31742  10 02 39.27   +02 01 24.9   24.5r 16EF391   T09  C~8HEi      
2016 03  09.32069  10 02 39.26   +02 01 25.2   25.2r 16EF391   T09  C~8HEi      
2016 03  09.32455  10 02 39.25   +02 01 25.4   25.5r 16EF391   T09  C~8HEi      
2016 03  09.32844  10 02 39.22   +02 01 25.4   25.8r 16EF391   T09  C~8HEi      
2016 03  09.33236  10 02 39.22   +02 01 25.4   25.2r 16EF391   T09  C~8HEi      
2016 03  09.33622  10 02 39.19   +02 01 25.6   25.5r 16EF391   T09  C~8HEi      
2016 03  09.34016  10 02 39.17   +02 01 25.7   25.2r 16EF391   T09  C~8HEi      
2016 03  12.40209  10 02 27.09   +02 02 37.8   23.7z 16EF391   T09  C~8HEi      
2016 03  12.43157  10 02 26.96   +02 02 39.0   23.8z 16EF391   T09  C~8HEi      
2016 03  12.43532  10 02 26.96   +02 02 39.0   24.3z 16EF391   T09  C~8HEi      
2016 03  12.43918  10 02 26.92   +02 02 39.2   24.0z 16EF391   T09  C~8HEi      
2016 03  12.44304  10 02 26.92   +02 02 39.2   24.2z 16EF391   T09  C~8HEi      
2016 03  12.44690  10 02 26.91   +02 02 39.3   24.3z 16EF391   T09  C~8HEi      
2016 03  12.45077  10 02 26.89   +02 02 39.3   23.9z 16EF391   T09  C~8HEi      
2016 03  12.45461  10 02 26.87   +02 02 39.5   24.2z 16EF391   T09  C~8HEi      
2016 03  12.45847  10 02 26.86   +02 02 39.5   24.0z 16EF391   T09  C~8HEi      
2016 03  12.47004  10 02 26.80   +02 02 40.0   23.9z 16EF391   T09  C~8HEi      
2016 03  12.47390  10 02 26.80   +02 02 40.0   24.6z 16EF391   T09  C~8HEi      
2016 03  15.49118  10 02 15.17   +02 03 51.5   23.3y 16EF391   T09  C~8HEi      
2016 03  15.49503  10 02 15.19   +02 03 52.0   24.0y 16EF391   T09  C~8HEi      
2016 03  15.49888  10 02 15.17   +02 03 52.1   24.4y 16EF391   T09  C~8HEi      
2016 03  15.50274  10 02 15.15   +02 03 52.0   24.0y 16EF391   T09  C~8HEi      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00     0.15       0.00    -0.03
     2   0.0001     -2.07     0.03      -0.03    -0.05
     3   0.0001     -2.42    -0.09       0.05     0.04
     4   0.0078   -187.44    -0.13       1.05    -0.04
     5   0.0079   -188.70    -0.06       1.00    -0.09
     6   0.0079   -188.84     0.01       0.95    -0.14
     7   0.0079   -189.16    -0.05       0.93    -0.16
     8   0.0079   -189.37    -0.00       1.07    -0.02
     9   0.0079   -189.58     0.04       1.20     0.11
    10   0.0079   -189.86     0.27       1.10     0.00
    11   0.0133   -317.70    -0.01       2.96     0.15
    12   0.0133   -318.34     0.03       2.93     0.12
    13   0.0134   -319.04    -0.01       2.67    -0.15
    14   0.0134   -319.28    -0.04       2.90     0.08
    15   0.0134   -319.49    -0.00       3.03     0.21
    16   0.0134   -319.91    -0.17       2.87     0.05
    17   0.0134   -319.91     0.09       2.87     0.04
    18   0.0134   -320.41    -0.15       2.90     0.07
    19   0.0134   -320.72    -0.21       2.89     0.05
    20   0.0218   -515.60     0.30       6.71    -0.36
    21   0.0219   -517.84    -0.06       7.14     0.04
    22   0.0219   -517.84     0.18       7.14     0.04
    23   0.0219   -518.47    -0.20       7.12     0.01
    24   0.0219   -518.47     0.04       7.12     0.00
    25   0.0219   -518.65     0.12       7.16     0.04
    26   0.0219   -518.93     0.08       7.06    -0.07
    27   0.0220   -519.28    -0.02       7.14     0.00
    28   0.0220   -519.42     0.08       7.08    -0.05
    29   0.0220   -520.44    -0.19       7.24     0.08
    30   0.0220   -520.44     0.05       7.24     0.08
    31   0.0303   -708.79    -0.24      12.87    -0.37
    32   0.0303   -708.68     0.10      13.44     0.19
    33   0.0303   -709.00     0.03      13.43     0.17
    34   0.0303   -709.24     0.02      13.23    -0.03

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.