Orbit Fit and Astrometric record for 16EM368

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16EM368   
# Created Wed Nov 27 02:10:35 2024
# Orbit generated from Bernstein formalism
# Fitting     15 observations of     15
# Arc:   8.05d
# First observation: 2016/03/04
#  Last observation: 2016/03/12
Preliminary a, adot, b, bdot, g, gdot:
   0.000000   0.042580   0.000001  -0.004609   0.032583   0.000000
# WARNING Fitting with energy constraint
# Chi-squared of fit:     7.80 DOF:     25 RMS:  0.13
# Min/Max residuals:    -0.24    0.33
# Exact a, adot, b, bdot, g, gdot:
  1.854596E-05  3.650546E-02 -1.391894E-06 -3.719285E-03  3.156202E-02  5.495809E-03
# Covariance matrix:
  4.5596E-12  7.3708E-09 -5.8386E-14 -1.0788E-09  1.2912E-09 -3.0046E-08
  7.3708E-09  1.3057E-05 -8.9634E-11 -1.9066E-06  2.2756E-06 -6.3299E-05
 -5.8386E-14 -8.9634E-11  3.2520E-13 -4.6915E-12 -1.6091E-11 -3.7443E-10
 -1.0788E-09 -1.9066E-06 -4.6915E-12  2.7982E-07 -3.3231E-07  9.2634E-06
  1.2912E-09  2.2756E-06 -1.6091E-11 -3.3231E-07  3.9685E-07 -1.0681E-05
 -3.0046E-08 -6.3299E-05 -3.7443E-10  9.2634E-06 -1.0681E-05  9.1704E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
  -16.958076  140.690071   -0.386371   -0.265244   -0.870443  2457451.739619
# Heliocentric elements and errors
Epoch:              2457450.5000  =  2016/03/03
Mean Anomaly:           38.47882 +/-    79.879
Argument of Peri:      194.29260 +/-   162.568
Long of Asc Node:      250.80004 +/-     1.155
Inclination:            17.42228 +/-     0.117
Eccentricity:         0.21181454 +/-    0.7104
Semi-Major Axis:     38.00606448 +/-    9.8439
Time of Perihelion: 2448303.1148 +/-   18653.7
Perihelion:          29.95582727 +/-   28.0931
Aphelion:            46.05630169 +/-   29.5182
Period (y)              234.3082 +/-     91.03
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -24.40163638 +/-    0.4680
Ecliptic Y           19.47452186 +/-    0.3832
Ecliptic Z           -9.24128321 +/-    0.1845
Ecliptic XDOT        -0.00228632 +/-    0.0019
Ecliptic YDOT        -0.00222786 +/-    0.0017
Ecliptic ZDOT        -0.00044764 +/-    0.0007
# Distances at JD0 (AU)
Heliocenter to KBO   32.55914887 +/-    0.4223
Geocenter to KBO     31.68364924 +/-    0.6324
# Hcoef:  8.73

The following table shows the complete astrometric record for 16EM368. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EM368) followed by the observatory code and reference code for the source of the astrometry.

2016 03  04.23883  09 11 02.67   -01 31 19.7   23.7i 16EM368   T09  C~8Djj      
2016 03  04.25395  09 11 02.61   -01 31 19.2   23.8i 16EM368   T09  C~8Djj      
2016 03  04.30809  09 11 02.31   -01 31 17.0   23.8i 16EM368   T09  C~8Djj      
2016 03  07.23850  09 10 47.64   -01 29 31.5   24.2g 16EM368   T09  C~8Djj      
2016 03  07.26325  09 10 47.53   -01 29 30.5   24.4g 16EM368   T09  C~8Djj      
2016 03  07.27172  09 10 47.47   -01 29 30.2   24.7g 16EM368   T09  C~8Djj      
2016 03  09.23801  09 10 37.96   -01 28 18.2   23.6r 16EM368   T09  C~8Djj      
2016 03  09.26092  09 10 37.87   -01 28 17.6   23.7r 16EM368   T09  C~8Djj      
2016 03  09.28237  09 10 37.73   -01 28 16.6   24.0r 16EM368   T09  C~8Djj      
2016 03  12.23749  09 10 23.99   -01 26 27.2   23.5z 16EM368   T09  C~8Djj      
2016 03  12.24703  09 10 23.93   -01 26 27.1   23.9z 16EM368   T09  C~8Djj      
2016 03  12.24973  09 10 23.91   -01 26 26.7   23.5z 16EM368   T09  C~8Djj      
2016 03  12.27134  09 10 23.82   -01 26 26.1   23.4z 16EM368   T09  C~8Djj      
2016 03  12.28216  09 10 23.77   -01 26 25.7   23.9z 16EM368   T09  C~8Djj      
2016 03  12.29296  09 10 23.73   -01 26 25.1   23.2z 16EM368   T09  C~8Djj      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.05       0.00    -0.10
     2   0.0000     -1.01     0.22       0.20    -0.05
     3   0.0002     -5.97    -0.13       0.91     0.12
     4   0.0082   -247.74    -0.06      33.55    -0.07
     5   0.0083   -249.62     0.11      34.00     0.09
     6   0.0083   -250.56    -0.14      34.00     0.00
     7   0.0137   -408.41    -0.05      58.60     0.08
     8   0.0137   -409.88     0.33      58.75    -0.05
     9   0.0138   -412.18    -0.24      59.06    -0.01
    10   0.0219   -641.89     0.14      99.70     0.13
    11   0.0219   -642.78    -0.01      99.51    -0.19
    12   0.0219   -643.19    -0.21      99.80     0.06
    13   0.0220   -644.66     0.00      99.96    -0.09
    14   0.0220   -645.49     0.01     100.11    -0.09
    15   0.0221   -646.25     0.09     100.49     0.15

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.