The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16EW391 # Created Wed Nov 27 02:10:35 2024 # Orbit generated from Bernstein formalism # Fitting 17 observations of 17 # Arc: 8.04d # First observation: 2016/03/04 # Last observation: 2016/03/12 Preliminary a, adot, b, bdot, g, gdot: -0.000000 0.025688 0.000001 0.001015 0.023723 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # Chi-squared of fit: 6.53 DOF: 29 RMS: 0.11 # Min/Max residuals: -0.22 0.39 # Exact a, adot, b, bdot, g, gdot: 1.501832E-05 2.193089E-02 1.377586E-06 1.379973E-03 2.308257E-02 -1.615176E-03 # Covariance matrix: 6.5320E-12 8.8838E-09 -4.1453E-13 -8.5444E-10 1.5601E-09 -4.7976E-08 8.8838E-09 1.2420E-05 -5.7621E-10 -1.1941E-06 2.1756E-06 -7.5739E-05 -4.1453E-13 -5.7621E-10 1.7360E-13 4.7572E-11 -1.0120E-10 2.8755E-09 -8.5444E-10 -1.1941E-06 4.7572E-11 1.1583E-07 -2.0911E-07 7.4319E-06 1.5601E-09 2.1756E-06 -1.0120E-10 -2.0911E-07 3.8144E-07 -1.2448E-05 -4.7976E-08 -7.5739E-05 2.8755E-09 7.4319E-06 -1.2448E-05 2.4671E-03 # lat0 lon0 xBary yBary zBary JD0 -10.842829 140.133788 -0.396885 -0.170166 -0.889335 2457451.844529 # Heliocentric elements and errors Epoch: 2457450.5000 = 2016/03/03 Mean Anomaly: 294.65480 +/- 272.175 Argument of Peri: 1.82301 +/- 109.754 Long of Asc Node: 211.39199 +/- 6.431 Inclination: 11.23601 +/- 0.435 Eccentricity: 0.07009260 +/- 2.2469 Semi-Major Axis: 45.35023916 +/- 22.4227 Time of Perihelion: 2477698.3531 +/- 82988.5 Perihelion: 42.17152315 +/- 104.0094 Aphelion: 48.52895518 +/- 104.6848 Period (y) 305.4060 +/- 226.50 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -33.61201066 +/- 0.8738 Ecliptic Y 27.54741787 +/- 0.7298 Ecliptic Z -8.14962872 +/- 0.2180 Ecliptic XDOT -0.00154677 +/- 0.0043 Ecliptic YDOT -0.00210442 +/- 0.0038 Ecliptic ZDOT 0.00019681 +/- 0.0011 # Distances at JD0 (AU) Heliocenter to KBO 44.21587882 +/- 0.8059 Geocenter to KBO 43.32274138 +/- 1.1592 # Hcoef: 8.04
The following table shows the complete astrometric record for 16EW391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EW391) followed by the observatory code and reference code for the source of the astrometry.
2016 03 04.34374 09 16 29.89 +04 27 49.7 24.0i 16EW391 T09 C~8HEj 2016 03 04.34717 09 16 29.88 +04 27 49.9 24.3i 16EW391 T09 C~8HEj 2016 03 04.35871 09 16 29.84 +04 27 50.2 24.4i 16EW391 T09 C~8HEj 2016 03 04.36703 09 16 29.79 +04 27 50.2 24.0i 16EW391 T09 C~8HEj 2016 03 04.37528 09 16 29.76 +04 27 50.6 24.3i 16EW391 T09 C~8HEj 2016 03 04.38892 09 16 29.71 +04 27 51.1 24.1i 16EW391 T09 C~8HEj 2016 03 04.40242 09 16 29.66 +04 27 51.4 24.0i 16EW391 T09 C~8HEj 2016 03 04.41331 09 16 29.62 +04 27 51.6 24.3i 16EW391 T09 C~8HEj 2016 03 07.35383 09 16 18.32 +04 29 08.2 25.3g 16EW391 T09 C~8HEj 2016 03 07.35667 09 16 18.31 +04 29 08.3 25.2g 16EW391 T09 C~8HEj 2016 03 07.37512 09 16 18.23 +04 29 08.7 25.2g 16EW391 T09 C~8HEj 2016 03 07.40643 09 16 18.12 +04 29 09.7 25.1g 16EW391 T09 C~8HEj 2016 03 12.30861 09 16 00.22 +04 31 17.6 24.4z 16EW391 T09 C~8HEj 2016 03 12.31203 09 16 00.21 +04 31 17.6 24.0z 16EW391 T09 C~8HEj 2016 03 12.32378 09 16 00.16 +04 31 18.1 24.2z 16EW391 T09 C~8HEj 2016 03 12.35418 09 16 00.09 +04 31 18.8 24.2z 16EW391 T09 C~8HEj 2016 03 12.37925 09 15 59.97 +04 31 19.6 24.2z 16EW391 T09 C~8HEj
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.00 0.00 -0.09 2 0.0000 -0.20 0.02 0.14 0.03 3 0.0000 -0.86 0.11 0.25 0.06 4 0.0001 -1.58 -0.07 0.02 -0.22 5 0.0001 -2.13 -0.08 0.26 -0.03 6 0.0001 -2.99 -0.06 0.51 0.13 7 0.0002 -3.79 0.01 0.57 0.10 8 0.0002 -4.43 0.08 0.57 0.03 9 0.0082 -188.75 0.02 21.75 -0.02 10 0.0082 -188.92 0.03 21.80 0.01 11 0.0083 -190.18 -0.07 21.81 -0.11 12 0.0084 -192.05 0.02 22.26 0.11 13 0.0218 -486.03 -0.09 62.08 -0.07 14 0.0218 -486.17 -0.03 62.03 -0.14 15 0.0218 -487.04 -0.20 62.28 0.01 16 0.0219 -488.25 0.39 62.63 0.10 17 0.0220 -490.20 -0.08 62.84 0.10
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.