Orbit Fit and Astrometric record for 16EW392

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16EW392   
# Created Wed Nov 27 02:10:35 2024
# Orbit generated from Bernstein formalism
# Fitting     14 observations of     14
# Arc:  32.93d
# First observation: 2016/02/03
#  Last observation: 2016/03/07
Preliminary a, adot, b, bdot, g, gdot:
   0.000000   0.033024   0.000000  -0.010143   0.027419   0.000000
# WARNING Fitting with energy constraint
# Chi-squared of fit:     4.14 DOF:     23 RMS:  0.10
# Min/Max residuals:    -0.18    0.23
# Exact a, adot, b, bdot, g, gdot:
  1.586346E-05  2.620510E-02 -5.685079E-06 -9.952707E-03  2.635495E-02 -5.552868E-03
# Covariance matrix:
  1.2919E-12  1.5386E-09  2.0853E-14 -4.0423E-11  2.3436E-10 -7.8865E-09
  1.5386E-09  2.5663E-06  3.4804E-11 -6.6692E-08  3.8848E-07 -1.3811E-05
  2.0853E-14  3.4804E-11  3.6191E-13 -5.1954E-12  5.2480E-12 -1.9836E-10
 -4.0423E-11 -6.6692E-08 -5.1954E-12  1.8434E-09 -1.0188E-08  3.0994E-07
  2.3436E-10  3.8848E-07  5.2480E-12 -1.0188E-08  5.9031E-08 -1.9724E-06
 -7.8865E-09 -1.3811E-05 -1.9836E-10  3.0994E-07 -1.9724E-06  1.3755E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
  -11.377076  140.206385    0.112775   -0.192697   -0.958568  2457421.989979
# Heliocentric elements and errors
Epoch:              2457420.5000  =  2016/02/02
Mean Anomaly:          320.98695 +/-    19.940
Argument of Peri:      271.69471 +/-    38.260
Long of Asc Node:      293.13471 +/-     1.391
Inclination:            23.42303 +/-     1.003
Eccentricity:         0.25589953 +/-    0.4490
Semi-Major Axis:     46.50891763 +/-   14.0682
Time of Perihelion: 2469975.3098 +/-    2954.5
Perihelion:          34.60730750 +/-   23.3612
Aphelion:            58.41052776 +/-   27.3556
Period (y)              317.1849 +/-    143.92
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -29.26441835 +/-    0.2635
Ecliptic Y           24.51789522 +/-    0.2195
Ecliptic Z           -7.48516765 +/-    0.0690
Ecliptic XDOT        -0.00115158 +/-    0.0008
Ecliptic YDOT        -0.00259113 +/-    0.0008
Ecliptic ZDOT        -0.00089980 +/-    0.0002
# Distances at JD0 (AU)
Heliocenter to KBO   38.90451262 +/-    0.2421
Geocenter to KBO     37.94353968 +/-    0.3498
# Hcoef:  9.03

The following table shows the complete astrometric record for 16EW392. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EW392) followed by the observatory code and reference code for the source of the astrometry.

2016 02  03.48919  09 16 06.83   +03 56 00.3   24.0y 16EW392   T09  C~8HEl      
2016 02  03.53584  09 16 06.58   +03 56 01.4   23.4y 16EW392   T09  C~8HEl      
2016 02  03.55770  09 16 06.48   +03 56 01.4   24.4y 16EW392   T09  C~8HEl      
2016 02  03.57666  09 16 06.37   +03 56 01.7   23.5y 16EW392   T09  C~8HEl      
2016 03  04.34374  09 13 37.42   +04 06 23.6   24.8i 16EW392   T09  C~8HEl      
2016 03  04.35871  09 13 37.35   +04 06 23.9   24.9i 16EW392   T09  C~8HEl      
2016 03  04.36703  09 13 37.31   +04 06 24.1   24.9i 16EW392   T09  C~8HEl      
2016 03  04.38622  09 13 37.21   +04 06 24.6   24.8i 16EW392   T09  C~8HEl      
2016 03  04.38892  09 13 37.21   +04 06 24.6   24.9i 16EW392   T09  C~8HEl      
2016 03  04.39973  09 13 37.17   +04 06 24.9   24.9i 16EW392   T09  C~8HEl      
2016 03  04.41331  09 13 37.10   +04 06 25.3   25.0i 16EW392   T09  C~8HEl      
2016 03  07.35383  09 13 24.04   +04 07 34.3   25.5g 16EW392   T09  C~8HEl      
2016 03  07.40643  09 13 23.81   +04 07 35.5   26.2g 16EW392   T09  C~8HEl      
2016 03  07.42361  09 13 23.73   +04 07 36.2   26.1g 16EW392   T09  C~8HEl      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.03       0.00    -0.06
     2   0.0001     -3.90    -0.17      -0.10     0.23
     3   0.0002     -5.32     0.17      -0.56    -0.05
     4   0.0002     -6.98     0.03      -0.78    -0.11
     5   0.0817  -2319.22     0.02     -90.70     0.01
     6   0.0818  -2320.31     0.02     -90.73    -0.04
     7   0.0818  -2320.94    -0.00     -90.72    -0.04
     8   0.0819  -2322.52    -0.18     -90.70    -0.05
     9   0.0819  -2322.52     0.02     -90.70    -0.05
    10   0.0819  -2323.18     0.14     -90.60     0.04
    11   0.0819  -2324.30     0.01     -90.54     0.08
    12   0.0900  -2531.46    -0.01     -84.55    -0.06
    13   0.0901  -2535.11     0.06     -84.46    -0.08
    14   0.0902  -2536.46    -0.08     -84.16     0.19

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.