Orbit Fit and Astrometric record for 16EX392

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16EX392   
# Created Wed Nov 27 02:10:35 2024
# Orbit generated from Bernstein formalism
# Fitting     14 observations of     14
# Arc:  37.93d
# First observation: 2016/02/03
#  Last observation: 2016/03/12
Preliminary a, adot, b, bdot, g, gdot:
  -0.000001   0.025205   0.000001   0.005919   0.023186   0.000000
# Chi-squared of fit:     5.38 DOF:     22 RMS:  0.11
# Min/Max residuals:    -0.16    0.28
# Exact a, adot, b, bdot, g, gdot:
  1.537708E-05  2.198218E-02  4.758752E-06  6.109695E-03  2.269623E-02 -6.686131E-03
# Covariance matrix:
  4.7228E-13  1.4849E-10  2.4387E-14 -8.8473E-12  2.3530E-11 -7.2622E-10
  1.4849E-10  2.1176E-07  3.5210E-11 -1.2673E-08  3.1743E-08 -1.5366E-06
  2.4387E-14  3.5210E-11  3.5946E-13 -5.9336E-12  5.2085E-12 -2.9430E-10
 -8.8473E-12 -1.2673E-08 -5.9336E-12  8.2465E-10 -1.8799E-09  1.0307E-07
  2.3530E-11  3.1743E-08  5.2085E-12 -1.8799E-09  4.8120E-09 -2.0180E-07
 -7.2622E-10 -1.5366E-06 -2.9430E-10  1.0307E-07 -2.0180E-07  2.6751E-05
#      lat0       lon0       xBary       yBary       zBary        JD0
  -16.724360  139.999799    0.111766   -0.281210   -0.936535  2457421.846669
# Heliocentric elements and errors
Epoch:              2457420.5000  =  2016/02/02
Mean Anomaly:          328.80048 +/-    11.184
Argument of Peri:       17.80915 +/-    13.969
Long of Asc Node:      185.21476 +/-     0.630
Inclination:            22.42707 +/-     0.221
Eccentricity:         0.37444608 +/-    0.2496
Semi-Major Axis:     60.49079907 +/-   14.3104
Time of Perihelion: 2472313.3497 +/-     754.6
Perihelion:          37.84025645 +/-   17.5536
Aphelion:            83.14134168 +/-   24.7963
Period (y)              470.4811 +/-    166.95
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -33.00572772 +/-    0.0988
Ecliptic Y           27.83551845 +/-    0.0829
Ecliptic Z          -12.67892537 +/-    0.0388
Ecliptic XDOT        -0.00127574 +/-    0.0004
Ecliptic YDOT        -0.00239848 +/-    0.0004
Ecliptic ZDOT         0.00093795 +/-    0.0002
# Distances at JD0 (AU)
Heliocenter to KBO   44.99943664 +/-    0.0894
Geocenter to KBO     44.06018281 +/-    0.1347
# Hcoef:  7.90

The following table shows the complete astrometric record for 16EX392. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EX392) followed by the observatory code and reference code for the source of the astrometry.

2016 02  03.34588  09 08 48.88   -01 05 50.2   23.7y 16EX392   T09  C~8HEl      
2016 02  03.35844  09 08 48.82   -01 05 49.9   23.5y 16EX392   T09  C~8HEl      
2016 02  03.37476  09 08 48.76   -01 05 49.3   23.6y 16EX392   T09  C~8HEl      
2016 02  03.38864  09 08 48.70   -01 05 49.2   23.4y 16EX392   T09  C~8HEl      
2016 03  04.23536  09 06 45.34   -00 52 26.4   24.7i 16EX392   T09  C~8HEl      
2016 03  04.25126  09 06 45.27   -00 52 25.9   24.0i 16EX392   T09  C~8HEl      
2016 03  04.26474  09 06 45.22   -00 52 25.4   24.1i 16EX392   T09  C~8HEl      
2016 03  04.31992  09 06 45.02   -00 52 23.9   23.8i 16EX392   T09  C~8HEl      
2016 03  09.24797  09 06 27.49   -00 49 50.1   25.0r 16EX392   T09  C~8HEl      
2016 03  09.26092  09 06 27.44   -00 49 49.2   25.7r 16EX392   T09  C~8HEl      
2016 03  09.28024  09 06 27.37   -00 49 48.7   26.0r 16EX392   T09  C~8HEl      
2016 03  12.23407  09 06 17.45   -00 48 15.2   23.8z 16EX392   T09  C~8HEl      
2016 03  12.25783  09 06 17.37   -00 48 14.5   23.9z 16EX392   T09  C~8HEl      
2016 03  12.27134  09 06 17.33   -00 48 14.0   24.0z 16EX392   T09  C~8HEl      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.01       0.00    -0.10
     2   0.0000     -0.95    -0.09       0.01    -0.10
     3   0.0001     -1.99     0.01       0.31     0.20
     4   0.0001     -2.88     0.09       0.13     0.01
     5   0.0818  -2009.73     0.06     200.72    -0.01
     6   0.0819  -2010.89    -0.10     200.88    -0.05
     7   0.0819  -2011.75    -0.12     201.12     0.04
     8   0.0821  -2015.07     0.04     201.64    -0.12
     9   0.0956  -2312.40     0.23     267.95    -0.16
    10   0.0956  -2313.39     0.02     268.58     0.28
    11   0.0956  -2314.54     0.02     268.73     0.17
    12   0.1037  -2484.77    -0.08     312.41    -0.04
    13   0.1038  -2486.13    -0.07     312.71    -0.10
    14   0.1038  -2486.85    -0.01     313.01    -0.01

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.