The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16EY392 # Created Wed Nov 27 02:10:35 2024 # Orbit generated from Bernstein formalism # Fitting 10 observations of 10 # Arc: 8.00d # First observation: 2016/03/04 # Last observation: 2016/03/12 Preliminary a, adot, b, bdot, g, gdot: -0.000001 0.093668 0.000000 0.009983 0.052851 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # Chi-squared of fit: 2.66 DOF: 15 RMS: 0.09 # Min/Max residuals: -0.20 0.13 # Exact a, adot, b, bdot, g, gdot: 2.299199E-05 7.369105E-02 2.845480E-06 1.090333E-02 4.964015E-02 7.583072E-03 # Covariance matrix: 1.2000E-11 3.4794E-08 5.2222E-13 -1.5785E-09 5.6573E-09 -1.0224E-07 3.4794E-08 1.0490E-04 1.6071E-09 -4.7655E-06 1.7022E-05 -3.3716E-04 5.2222E-13 1.6071E-09 3.4894E-13 -9.2056E-11 2.6004E-10 -6.0402E-09 -1.5785E-09 -4.7655E-06 -9.2056E-11 2.1857E-07 -7.7309E-07 1.5558E-05 5.6573E-09 1.7022E-05 2.6004E-10 -7.7309E-07 2.7626E-06 -5.4066E-05 -1.0224E-07 -3.3716E-04 -6.0402E-09 1.5558E-05 -5.4066E-05 1.8410E-03 # lat0 lon0 xBary yBary zBary JD0 -8.767888 151.074257 -0.219175 -0.146792 -0.952813 2457451.923139 # Heliocentric elements and errors Epoch: 2457450.5000 = 2016/03/03 Mean Anomaly: 20.14818 +/- 88.189 Argument of Peri: 281.45466 +/- 153.737 Long of Asc Node: 196.07474 +/- 4.676 Inclination: 11.87424 +/- 0.976 Eccentricity: 0.24519149 +/- 0.2589 Semi-Major Axis: 27.04011953 +/- 3.9534 Time of Perihelion: 2454576.1165 +/- 12565.5 Perihelion: 20.41011231 +/- 7.6095 Aphelion: 33.67012675 +/- 8.5576 Period (y) 140.6116 +/- 30.84 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -18.37959400 +/- 0.5834 Ecliptic Y 9.90198756 +/- 0.3225 Ecliptic Z -3.07068334 +/- 0.1028 Ecliptic XDOT -0.00240801 +/- 0.0019 Ecliptic YDOT -0.00332003 +/- 0.0014 Ecliptic ZDOT 0.00053059 +/- 0.0003 # Distances at JD0 (AU) Heliocenter to KBO 21.10184658 +/- 0.5304 Geocenter to KBO 20.14498531 +/- 0.6745 # Hcoef: 11.77
The following table shows the complete astrometric record for 16EY392. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EY392) followed by the observatory code and reference code for the source of the astrometry.
2016 03 04.42235 10 00 02.47 +02 52 58.1 24.6i 16EY392 T09 C~8HEl 2016 03 04.43733 10 00 02.33 +02 52 58.9 24.3i 16EY392 T09 C~8HEl 2016 03 04.45194 10 00 02.22 +02 52 59.6 24.4i 16EY392 T09 C~8HEl 2016 03 07.27865 09 59 39.92 +02 55 41.5 25.9g 16EY392 T09 C~8HEl 2016 03 07.28866 09 59 39.85 +02 55 42.3 25.9g 16EY392 T09 C~8HEl 2016 03 07.29878 09 59 39.76 +02 55 43.0 26.1g 16EY392 T09 C~8HEl 2016 03 07.32886 09 59 39.52 +02 55 44.6 25.7g 16EY392 T09 C~8HEl 2016 03 12.39109 09 59 00.93 +03 00 36.4 24.2z 16EY392 T09 C~8HEl 2016 03 12.40577 09 59 00.83 +03 00 37.2 24.6z 16EY392 T09 C~8HEl 2016 03 12.42050 09 59 00.72 +03 00 38.0 24.5z 16EY392 T09 C~8HEl
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.10 0.00 0.13 2 0.0000 -2.24 -0.13 0.02 -0.02 3 0.0001 -4.03 0.04 0.10 -0.09 4 0.0078 -373.58 0.03 35.41 -0.20 5 0.0078 -374.85 0.08 35.79 0.06 6 0.0079 -376.35 -0.09 35.98 0.12 7 0.0080 -380.28 -0.05 36.22 -0.01 8 0.0218 -1023.81 -0.13 108.31 0.01 9 0.0219 -1025.49 0.05 108.54 0.02 10 0.0219 -1027.32 0.09 108.71 -0.02
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.