Orbit Fit and Astrometric record for 16EY392

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16EY392   
# Created Wed Nov 27 02:10:35 2024
# Orbit generated from Bernstein formalism
# Fitting     10 observations of     10
# Arc:   8.00d
# First observation: 2016/03/04
#  Last observation: 2016/03/12
Preliminary a, adot, b, bdot, g, gdot:
  -0.000001   0.093668   0.000000   0.009983   0.052851   0.000000
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# WARNING Fitting with energy constraint
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# Chi-squared of fit:     2.66 DOF:     15 RMS:  0.09
# Min/Max residuals:    -0.20    0.13
# Exact a, adot, b, bdot, g, gdot:
  2.299199E-05  7.369105E-02  2.845480E-06  1.090333E-02  4.964015E-02  7.583072E-03
# Covariance matrix:
  1.2000E-11  3.4794E-08  5.2222E-13 -1.5785E-09  5.6573E-09 -1.0224E-07
  3.4794E-08  1.0490E-04  1.6071E-09 -4.7655E-06  1.7022E-05 -3.3716E-04
  5.2222E-13  1.6071E-09  3.4894E-13 -9.2056E-11  2.6004E-10 -6.0402E-09
 -1.5785E-09 -4.7655E-06 -9.2056E-11  2.1857E-07 -7.7309E-07  1.5558E-05
  5.6573E-09  1.7022E-05  2.6004E-10 -7.7309E-07  2.7626E-06 -5.4066E-05
 -1.0224E-07 -3.3716E-04 -6.0402E-09  1.5558E-05 -5.4066E-05  1.8410E-03
#      lat0       lon0       xBary       yBary       zBary        JD0
   -8.767888  151.074257   -0.219175   -0.146792   -0.952813  2457451.923139
# Heliocentric elements and errors
Epoch:              2457450.5000  =  2016/03/03
Mean Anomaly:           20.14818 +/-    88.189
Argument of Peri:      281.45466 +/-   153.737
Long of Asc Node:      196.07474 +/-     4.676
Inclination:            11.87424 +/-     0.976
Eccentricity:         0.24519149 +/-    0.2589
Semi-Major Axis:     27.04011953 +/-    3.9534
Time of Perihelion: 2454576.1165 +/-   12565.5
Perihelion:          20.41011231 +/-    7.6095
Aphelion:            33.67012675 +/-    8.5576
Period (y)              140.6116 +/-     30.84
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -18.37959400 +/-    0.5834
Ecliptic Y            9.90198756 +/-    0.3225
Ecliptic Z           -3.07068334 +/-    0.1028
Ecliptic XDOT        -0.00240801 +/-    0.0019
Ecliptic YDOT        -0.00332003 +/-    0.0014
Ecliptic ZDOT         0.00053059 +/-    0.0003
# Distances at JD0 (AU)
Heliocenter to KBO   21.10184658 +/-    0.5304
Geocenter to KBO     20.14498531 +/-    0.6745
# Hcoef: 11.77

The following table shows the complete astrometric record for 16EY392. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EY392) followed by the observatory code and reference code for the source of the astrometry.

2016 03  04.42235  10 00 02.47   +02 52 58.1   24.6i 16EY392   T09  C~8HEl      
2016 03  04.43733  10 00 02.33   +02 52 58.9   24.3i 16EY392   T09  C~8HEl      
2016 03  04.45194  10 00 02.22   +02 52 59.6   24.4i 16EY392   T09  C~8HEl      
2016 03  07.27865  09 59 39.92   +02 55 41.5   25.9g 16EY392   T09  C~8HEl      
2016 03  07.28866  09 59 39.85   +02 55 42.3   25.9g 16EY392   T09  C~8HEl      
2016 03  07.29878  09 59 39.76   +02 55 43.0   26.1g 16EY392   T09  C~8HEl      
2016 03  07.32886  09 59 39.52   +02 55 44.6   25.7g 16EY392   T09  C~8HEl      
2016 03  12.39109  09 59 00.93   +03 00 36.4   24.2z 16EY392   T09  C~8HEl      
2016 03  12.40577  09 59 00.83   +03 00 37.2   24.6z 16EY392   T09  C~8HEl      
2016 03  12.42050  09 59 00.72   +03 00 38.0   24.5z 16EY392   T09  C~8HEl      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00     0.10       0.00     0.13
     2   0.0000     -2.24    -0.13       0.02    -0.02
     3   0.0001     -4.03     0.04       0.10    -0.09
     4   0.0078   -373.58     0.03      35.41    -0.20
     5   0.0078   -374.85     0.08      35.79     0.06
     6   0.0079   -376.35    -0.09      35.98     0.12
     7   0.0080   -380.28    -0.05      36.22    -0.01
     8   0.0218  -1023.81    -0.13     108.31     0.01
     9   0.0219  -1025.49     0.05     108.54     0.02
    10   0.0219  -1027.32     0.09     108.71    -0.02

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.