The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16EZ390 # Created Wed Nov 27 02:10:35 2024 # Orbit generated from Bernstein formalism # Fitting 10 observations of 10 # Arc: 5.03d # First observation: 2016/03/04 # Last observation: 2016/03/09 Preliminary a, adot, b, bdot, g, gdot: -0.000000 0.032483 -0.000000 -0.006949 0.025929 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # Chi-squared of fit: 2.51 DOF: 15 RMS: 0.09 # Min/Max residuals: -0.14 0.14 # Exact a, adot, b, bdot, g, gdot: 1.522946E-05 2.448331E-02 -4.440490E-06 -6.034498E-03 2.457231E-02 -3.740900E-05 # Covariance matrix: 2.0446E-11 3.0460E-08 -1.9592E-12 -3.4944E-09 5.2312E-09 -9.1764E-09 3.0460E-08 4.6159E-05 -2.9658E-09 -5.2902E-06 7.9193E-06 -1.5498E-05 -1.9592E-12 -2.9658E-09 4.9791E-13 3.1314E-10 -5.0891E-10 8.8696E-10 -3.4944E-09 -5.2902E-06 3.1314E-10 6.1085E-07 -9.0772E-07 1.7424E-06 5.2312E-09 7.9193E-06 -5.0891E-10 -9.0772E-07 1.3589E-06 -2.4476E-06 -9.1764E-09 -1.5498E-05 8.8696E-10 1.7424E-06 -2.4476E-06 8.3253E-04 # lat0 lon0 xBary yBary zBary JD0 -15.729384 142.500263 -0.357726 -0.249675 -0.887140 2457451.757419 # Heliocentric elements and errors Epoch: 2457450.5000 = 2016/03/03 Mean Anomaly: 1.82217 +/- 145.447 Argument of Peri: 226.96467 +/- 281.147 Long of Asc Node: 275.60147 +/- 4.472 Inclination: 20.49050 +/- 1.374 Eccentricity: 0.11400117 +/- 0.4392 Semi-Major Axis: 46.93457962 +/- 21.2109 Time of Perihelion: 2456856.0370 +/- 164895.7 Perihelion: 41.58398240 +/- 27.8943 Aphelion: 52.28517684 +/- 31.3568 Period (y) 321.5493 +/- 217.97 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -32.03059089 +/- 1.4742 Ecliptic Y 24.12128596 +/- 1.1314 Ecliptic Z -11.03269053 +/- 0.5234 Ecliptic XDOT -0.00151303 +/- 0.0025 Ecliptic YDOT -0.00228461 +/- 0.0020 Ecliptic ZDOT -0.00064605 +/- 0.0009 # Distances at JD0 (AU) Heliocenter to KBO 41.58744342 +/- 1.3188 Geocenter to KBO 40.69621944 +/- 1.9306 # Hcoef: 8.92
The following table shows the complete astrometric record for 16EZ390. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16EZ390) followed by the observatory code and reference code for the source of the astrometry.
2016 03 04.25663 09 19 10.82 -00 53 46.5 24.6i 16EZ390 T09 C~8HEi 2016 03 04.28639 09 19 10.68 -00 53 45.8 24.7i 16EZ390 T09 C~8HEi 2016 03 04.32535 09 19 10.51 -00 53 44.8 24.7i 16EZ390 T09 C~8HEi 2016 03 04.33349 09 19 10.48 -00 53 44.5 24.4i 16EZ390 T09 C~8HEi 2016 03 07.24417 09 18 58.37 -00 52 27.3 25.8g 16EZ390 T09 C~8HEi 2016 03 07.25265 09 18 58.34 -00 52 27.1 25.6g 16EZ390 T09 C~8HEi 2016 03 07.26536 09 18 58.30 -00 52 26.6 25.6g 16EZ390 T09 C~8HEi 2016 03 09.25227 09 18 50.26 -00 51 33.0 25.3r 16EZ390 T09 C~8HEi 2016 03 09.26518 09 18 50.22 -00 51 32.8 25.1r 16EZ390 T09 C~8HEi 2016 03 09.28668 09 18 50.13 -00 51 32.0 25.4r 16EZ390 T09 C~8HEi
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.11 0.00 0.11 2 0.0001 -2.21 -0.04 0.00 -0.02 3 0.0002 -4.95 -0.06 0.15 -0.05 4 0.0002 -5.47 -0.02 0.29 0.05 5 0.0082 -202.18 -0.10 16.22 -0.14 6 0.0082 -202.67 -0.02 16.26 -0.14 7 0.0082 -203.40 0.11 16.55 0.07 8 0.0137 -334.74 -0.11 29.35 0.03 9 0.0137 -335.37 0.11 29.35 -0.05 10 0.0138 -336.90 0.00 29.68 0.14
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.