The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GB370 # Created Wed Nov 27 02:10:38 2024 # Orbit generated from Bernstein formalism # Fitting 10 observations of 10 # Arc: 34.89d # First observation: 2016/03/07 # Last observation: 2016/04/11 Preliminary a, adot, b, bdot, g, gdot: 0.000003 0.067052 -0.000004 -0.012323 0.047899 0.000000 # Chi-squared of fit: 6.90 DOF: 14 RMS: 0.15 # Min/Max residuals: -0.22 0.39 # Exact a, adot, b, bdot, g, gdot: 2.146330E-05 5.960586E-02 -3.541234E-06 -1.150169E-02 4.621638E-02 1.794531E-02 # Covariance matrix: 3.8263E-13 6.8908E-11 -6.1132E-14 -8.1672E-12 1.7948E-11 1.5000E-09 6.8908E-11 2.8346E-07 -1.8113E-10 -3.0507E-08 5.8467E-08 2.4581E-06 -6.1132E-14 -1.8113E-10 3.7943E-13 1.6338E-11 -3.7819E-11 -1.6990E-09 -8.1672E-12 -3.0507E-08 1.6338E-11 3.3755E-09 -6.3064E-09 -2.6805E-07 1.7948E-11 5.8467E-08 -3.7819E-11 -6.3064E-09 1.2155E-08 5.3324E-07 1.5000E-09 2.4581E-06 -1.6990E-09 -2.6805E-07 5.3324E-07 2.8758E-05 # lat0 lon0 xBary yBary zBary JD0 12.991168 -150.889165 0.662389 0.165330 -0.715994 2457455.103509 # Heliocentric elements and errors Epoch: 2457450.5000 = 2016/03/03 Mean Anomaly: 60.65800 +/- 9.001 Argument of Peri: 38.00532 +/- 3.146 Long of Asc Node: 77.41898 +/- 0.278 Inclination: 16.20559 +/- 0.065 Eccentricity: 0.26521825 +/- 0.0876 Semi-Major Axis: 23.97016538 +/- 1.4766 Time of Perihelion: 2450227.9497 +/- 838.7 Perihelion: 17.61284010 +/- 2.3638 Aphelion: 30.32749066 +/- 2.8108 Period (y) 117.3586 +/- 10.84 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -19.38808973 +/- 0.0439 Ecliptic Y -10.03821300 +/- 0.0245 Ecliptic Z 4.86404006 +/- 0.0116 Ecliptic XDOT 0.00067888 +/- 0.0003 Ecliptic YDOT -0.00367045 +/- 0.0002 Ecliptic ZDOT -0.00042493 +/- 0.0001 # Distances at JD0 (AU) Heliocenter to KBO 22.36789282 +/- 0.0397 Geocenter to KBO 21.63734883 +/- 0.0516 # Hcoef: 11.25
The following table shows the complete astrometric record for 16GB370. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GB370) followed by the observatory code and reference code for the source of the astrometry.
2016 03 07.60272 14 06 31.23 +01 00 48.0 25.5g 16GB370 T09 C~89Tf 2016 03 07.61343 14 06 31.19 +01 00 48.8 26.0g 16GB370 T09 C~89Tf 2016 03 07.61769 14 06 31.16 +01 00 48.6 25.8g 16GB370 T09 C~89Tf 2016 03 07.63334 14 06 31.11 +01 00 49.3 25.3g 16GB370 T09 C~89Tf 2016 03 16.48011 14 05 41.36 +01 08 02.0 24.6z 16GB370 T09 C~89Tf 2016 03 16.50186 14 05 41.24 +01 08 03.0 23.7z 16GB370 T09 C~89Tf 2016 03 16.52963 14 05 41.05 +01 08 04.3 24.3z 16GB370 T09 C~89Tf 2016 04 11.44440 14 02 31.36 +01 28 45.3 24.0i 16GB370 T09 C~89Tf 2016 04 11.46760 14 02 31.17 +01 28 46.1 24.7i 16GB370 T09 C~89Tf 2016 04 11.48957 14 02 31.00 +01 28 47.3 24.2i 16GB370 T09 C~89Tf
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.22 0.00 -0.08 2 0.0000 -0.84 -0.10 0.54 0.27 3 0.0000 -1.19 -0.07 0.20 -0.15 4 0.0001 -2.14 0.39 0.59 -0.04 5 0.0243 -852.14 -0.12 147.00 0.04 6 0.0244 -854.17 0.15 147.32 0.05 7 0.0244 -857.30 -0.03 147.54 -0.09 8 0.0954 -3956.33 -0.11 323.13 0.03 9 0.0955 -3959.28 0.01 322.90 -0.16 10 0.0955 -3962.09 0.10 323.14 0.13
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.