The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GF370 # Created Wed Nov 27 02:10:38 2024 # Orbit generated from Bernstein formalism # Fitting 18 observations of 18 # Arc: 13.06d # First observation: 2016/04/02 # Last observation: 2016/04/15 Preliminary a, adot, b, bdot, g, gdot: 0.000001 0.025199 0.000001 0.000646 0.023410 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # Chi-squared of fit: 5.12 DOF: 31 RMS: 0.09 # Min/Max residuals: -0.27 0.15 # Exact a, adot, b, bdot, g, gdot: 1.480033E-05 2.044302E-02 1.202102E-06 6.002789E-04 2.264201E-02 -7.128026E-03 # Covariance matrix: 3.9775E-12 4.9125E-09 -1.7681E-14 4.7457E-11 8.1245E-10 -7.0634E-09 4.9125E-09 6.3548E-06 -2.2971E-11 6.1286E-08 1.0482E-06 -1.1478E-05 -1.7681E-14 -2.2971E-11 1.4960E-13 -5.3400E-12 -3.7838E-12 4.9345E-11 4.7457E-11 6.1286E-08 -5.3400E-12 9.7731E-10 1.0111E-08 -1.0836E-07 8.1245E-10 1.0482E-06 -3.7838E-12 1.0111E-08 1.7298E-07 -1.7911E-06 -7.0634E-09 -1.1478E-05 4.9345E-11 -1.0836E-07 -1.7911E-06 1.6901E-04 # lat0 lon0 xBary yBary zBary JD0 1.945644 -177.317183 -0.174626 0.033418 -0.979613 2457480.897709 # Heliocentric elements and errors Epoch: 2457480.5000 = 2016/04/02 Mean Anomaly: 297.63105 +/- 71.397 Argument of Peri: 149.41245 +/- 40.120 Long of Asc Node: 133.89057 +/- 2.732 Inclination: 2.52058 +/- 0.105 Eccentricity: 0.32818751 +/- 0.5822 Semi-Major Axis: 47.61090232 +/- 24.6807 Time of Perihelion: 2478269.0386 +/- 17465.2 Perihelion: 31.98559886 +/- 32.2988 Aphelion: 63.23620578 +/- 42.9285 Period (y) 328.5245 +/- 255.45 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -45.06652394 +/- 0.8099 Ecliptic Y -2.28907830 +/- 0.0379 Ecliptic Z 1.49956235 +/- 0.0275 Ecliptic XDOT 0.00097875 +/- 0.0016 Ecliptic YDOT -0.00243579 +/- 0.0002 Ecliptic ZDOT 0.00004329 +/- 0.0001 # Distances at JD0 (AU) Heliocenter to KBO 45.14953097 +/- 0.8084 Geocenter to KBO 44.16569296 +/- 0.8113 # Hcoef: 7.12
The following table shows the complete astrometric record for 16GF370. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GF370) followed by the observatory code and reference code for the source of the astrometry.
2016 04 02.39692 12 12 56.37 +00 43 07.0 23.1i 16GF370 T09 C~8AhT 2016 04 02.42290 12 12 56.28 +00 43 07.8 23.2i 16GF370 T09 C~8AhT 2016 04 02.43920 12 12 56.19 +00 43 08.3 23.1i 16GF370 T09 C~8AhT 2016 04 02.47448 12 12 56.05 +00 43 09.2 23.2i 16GF370 T09 C~8AhT 2016 04 02.49633 12 12 55.97 +00 43 09.7 23.3i 16GF370 T09 C~8AhT 2016 04 02.52059 12 12 55.86 +00 43 10.4 23.3i 16GF370 T09 C~8AhT 2016 04 04.35168 12 12 48.31 +00 43 59.2 24.7g 16GF370 T09 C~8AhT 2016 04 04.39165 12 12 48.13 +00 44 00.4 24.4g 16GF370 T09 C~8AhT 2016 04 04.39376 12 12 48.13 +00 44 00.4 24.6g 16GF370 T09 C~8AhT 2016 04 04.41084 12 12 48.05 +00 44 00.9 24.5g 16GF370 T09 C~8AhT 2016 04 08.50734 12 12 31.34 +00 45 48.1 23.8r 16GF370 T09 C~8AhT 2016 04 08.52003 12 12 31.28 +00 45 48.6 23.8r 16GF370 T09 C~8AhT 2016 04 08.52637 12 12 31.26 +00 45 48.6 23.7r 16GF370 T09 C~8AhT 2016 04 15.35150 12 12 04.35 +00 48 39.5 23.0y 16GF370 T09 C~8AhT 2016 04 15.40815 12 12 04.13 +00 48 40.5 23.0y 16GF370 T09 C~8AhT 2016 04 15.44032 12 12 04.00 +00 48 41.7 23.2y 16GF370 T09 C~8AhT 2016 04 15.45127 12 12 03.96 +00 48 41.9 23.3y 16GF370 T09 C~8AhT 2016 04 15.45934 12 12 03.93 +00 48 42.0 22.8y 16GF370 T09 C~8AhT
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.11 0.00 -0.16 2 0.0001 -1.56 0.12 0.20 0.05 3 0.0001 -2.99 -0.19 0.12 -0.02 4 0.0002 -5.28 -0.05 0.11 -0.01 5 0.0003 -6.58 0.15 0.09 -0.01 6 0.0003 -8.37 0.02 0.08 -0.01 7 0.0054 -131.68 0.15 -0.14 -0.03 8 0.0055 -134.63 -0.08 -0.11 0.03 9 0.0055 -134.63 0.06 -0.11 0.03 10 0.0055 -135.93 -0.07 -0.13 0.02 11 0.0167 -408.52 0.07 -1.34 0.04 12 0.0168 -409.55 -0.11 -1.24 0.15 13 0.0168 -409.82 0.03 -1.36 0.03 14 0.0355 -848.12 -0.04 -4.90 0.06 15 0.0356 -851.54 0.13 -5.29 -0.27 16 0.0357 -853.81 -0.09 -4.97 0.09 17 0.0357 -854.44 -0.03 -5.02 0.05 18 0.0358 -854.89 0.03 -5.11 -0.03
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.