The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GF391 # Created Wed Nov 27 02:10:38 2024 # Orbit generated from Bernstein formalism # Fitting 16 observations of 16 # Arc: 62.94d # First observation: 2016/04/02 # Last observation: 2016/06/04 Preliminary a, adot, b, bdot, g, gdot: -0.000000 0.029298 -0.000000 0.000131 0.025152 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # Chi-squared of fit: 4.96 DOF: 27 RMS: 0.10 # Min/Max residuals: -0.30 0.15 # Exact a, adot, b, bdot, g, gdot: 1.550131E-05 2.397475E-02 -1.334580E-07 1.013734E-04 2.429843E-02 8.841503E-04 # Covariance matrix: 3.7328E-12 5.6322E-09 -1.3771E-13 3.1828E-11 8.8128E-10 -1.0638E-07 5.6322E-09 9.0936E-06 -2.2261E-10 5.1385E-08 1.4180E-06 -1.7310E-04 -1.3771E-13 -2.2261E-10 1.3785E-13 -2.1104E-12 -3.4708E-11 4.2390E-09 3.1828E-11 5.1385E-08 -2.1104E-12 3.0860E-10 8.0125E-09 -9.7817E-07 8.8128E-10 1.4180E-06 -3.4708E-11 8.0125E-09 2.2119E-07 -2.6970E-05 -1.0638E-07 -1.7310E-04 4.2390E-09 -9.7817E-07 -2.6970E-05 3.3017E-03 # lat0 lon0 xBary yBary zBary JD0 0.385283 -175.990621 -0.151531 0.006758 -0.983987 2457480.877079 # Heliocentric elements and errors Epoch: 2457480.5000 = 2016/04/02 Mean Anomaly: 38.98256 +/- 108.419 Argument of Peri: 13.70758 +/- 26.789 Long of Asc Node: 126.82980 +/- 1.811 Inclination: 0.44669 +/- 0.009 Eccentricity: 0.06136587 +/- 1.5627 Semi-Major Axis: 44.17971678 +/- 0.3135 Time of Perihelion: 2445865.9969 +/- 461337.6 Perihelion: 41.46859007 +/- 69.0411 Aphelion: 46.89084350 +/- 69.0412 Period (y) 293.6585 +/- 3.13 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -42.02799724 +/- 0.7946 Ecliptic Y -3.10012006 +/- 0.0556 Ecliptic Z 0.27675833 +/- 0.0054 Ecliptic XDOT 0.00008969 +/- 0.0065 Ecliptic YDOT -0.00270871 +/- 0.0002 Ecliptic ZDOT 0.00001210 +/- 0.0000 # Distances at JD0 (AU) Heliocenter to KBO 42.14308830 +/- 0.7924 Geocenter to KBO 41.15491419 +/- 0.7966 # Hcoef: 8.42
The following table shows the complete astrometric record for 16GF391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GF391) followed by the observatory code and reference code for the source of the astrometry.
2016 04 02.37629 12 15 19.79 -01 14 24.4 24.0i 16GF391 T09 C~8HFs 2016 04 02.40651 12 15 19.65 -01 14 23.4 23.8i 16GF391 T09 C~8HFs 2016 04 02.45821 12 15 19.42 -01 14 22.1 23.9i 16GF391 T09 C~8HFs 2016 04 02.48823 12 15 19.29 -01 14 21.2 24.5i 16GF391 T09 C~8HFs 2016 04 02.50441 12 15 19.21 -01 14 20.7 23.7i 16GF391 T09 C~8HFs 2016 04 04.35952 12 15 11.10 -01 13 28.2 26.3g 16GF391 T09 C~8HFs 2016 04 04.38088 12 15 11.00 -01 13 27.5 25.7g 16GF391 T09 C~8HFs 2016 04 04.39802 12 15 10.92 -01 13 27.0 25.9g 16GF391 T09 C~8HFt 2016 04 08.50164 12 14 53.14 -01 11 32.4 24.7r 16GF391 T09 C~8HFt 2016 04 08.50945 12 14 53.12 -01 11 31.9 24.5r 16GF391 T09 C~8HFt 2016 04 08.52214 12 14 53.06 -01 11 31.7 24.3r 16GF391 T09 C~8HFt 2016 04 08.52425 12 14 53.04 -01 11 31.4 24.5r 16GF391 T09 C~8HFt 2016 06 04.24512 12 12 09.47 -00 54 09.3 24.2z 16GF391 T09 C~8HFt 2016 06 04.26496 12 12 09.45 -00 54 09.0 24.1z 16GF391 T09 C~8HFt 2016 06 04.28119 12 12 09.43 -00 54 08.8 24.8z 16GF391 T09 C~8HFt 2016 06 04.31896 12 12 09.41 -00 54 08.7 24.5z 16GF391 T09 C~8HFt
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.02 0.00 0.04 2 0.0001 -2.32 -0.10 0.08 0.14 3 0.0002 -6.01 -0.00 -0.09 -0.01 4 0.0003 -8.15 0.04 -0.04 0.06 5 0.0004 -9.45 -0.08 -0.06 0.05 6 0.0054 -141.92 0.15 -0.14 -0.03 7 0.0055 -143.58 0.04 -0.09 0.03 8 0.0055 -144.88 -0.01 -0.11 0.02 9 0.0168 -435.10 -0.01 -0.76 -0.30 10 0.0168 -435.57 0.07 -0.42 0.05 11 0.0168 -436.48 0.06 -0.59 -0.12 12 0.0168 -436.87 -0.18 -0.44 0.04 13 0.1721 -3102.35 0.03 -17.99 -0.17 14 0.1722 -3102.75 -0.04 -17.83 0.01 15 0.1722 -3103.10 -0.14 -17.77 0.09 16 0.1723 -3103.42 0.15 -17.80 0.10
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.