Orbit Fit and Astrometric record for 16GR390

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16GR390   
# Created Wed Nov 27 02:10:38 2024
# Orbit generated from Bernstein formalism
# Fitting     27 observations of     27
# Arc:  62.95d
# First observation: 2016/04/02
#  Last observation: 2016/06/04
Preliminary a, adot, b, bdot, g, gdot:
  -0.000001   0.025842  -0.000001   0.000313   0.023627   0.000000
# WARNING Fitting with energy constraint
# Chi-squared of fit:    17.53 DOF:     49 RMS:  0.14
# Min/Max residuals:    -0.39    0.28
# Exact a, adot, b, bdot, g, gdot:
  1.388750E-05  2.162874E-02  1.951116E-07  1.993600E-04  2.295044E-02 -1.195299E-02
# Covariance matrix:
  1.8261E-13  7.0277E-11 -1.7472E-14  1.9122E-12  1.1478E-11 -1.2368E-09
  7.0277E-11  1.1597E-07 -2.9477E-11  3.1458E-09  1.7482E-08 -2.4133E-06
 -1.7472E-14 -2.9477E-11  9.2090E-14 -1.4097E-12 -4.4363E-12  6.1590E-10
  1.9122E-12  3.1458E-09 -1.4097E-12  9.7808E-11  4.7413E-10 -6.5523E-08
  1.1478E-11  1.7482E-08 -4.4363E-12  4.7413E-10  2.6472E-09 -3.6041E-07
 -1.2368E-09 -2.4133E-06  6.1590E-10 -6.5523E-08 -3.6041E-07  5.1270E-05
#      lat0       lon0       xBary       yBary       zBary        JD0
    1.831010 -175.366059   -0.141032    0.031631   -0.985067  2457480.890769
# Heliocentric elements and errors
Epoch:              2457480.5000  =  2016/04/02
Mean Anomaly:          330.67999 +/-    26.169
Argument of Peri:      163.27553 +/-     2.178
Long of Asc Node:      110.35008 +/-     0.293
Inclination:             1.85820 +/-     0.003
Eccentricity:         0.55323710 +/-    0.3394
Semi-Major Axis:     64.96044034 +/-   36.7447
Time of Perihelion: 2473055.6951 +/-    4313.3
Perihelion:          29.02191501 +/-   27.4869
Aphelion:           100.89896567 +/-   61.1832
Period (y)              523.5783 +/-    444.24
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -44.38222850 +/-    0.0973
Ecliptic Y           -3.74121340 +/-    0.0079
Ecliptic Z            1.39223587 +/-    0.0031
Ecliptic XDOT         0.00162985 +/-    0.0009
Ecliptic YDOT        -0.00246352 +/-    0.0000
Ecliptic ZDOT        -0.00002178 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   44.56138692 +/-    0.0969
Geocenter to KBO     43.57215154 +/-    0.0977
# Hcoef:  7.54

The following table shows the complete astrometric record for 16GR390. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GR390) followed by the observatory code and reference code for the source of the astrometry.

2016 04  02.38998  12 19 55.02   -00 09 38.5   23.4i 16GR390   T09  C~8HFs      
2016 04  02.41462  12 19 54.90   -00 09 37.9   23.5i 16GR390   T09  C~8HFs      
2016 04  02.41732  12 19 54.89   -00 09 37.9   23.5i 16GR390   T09  C~8HFs      
2016 04  02.44189  12 19 54.78   -00 09 37.0   23.6i 16GR390   T09  C~8HFs      
2016 04  02.51521  12 19 54.47   -00 09 35.0   23.7i 16GR390   T09  C~8HFs      
2016 04  02.52328  12 19 54.43   -00 09 34.8   23.4i 16GR390   T09  C~8HFs      
2016 04  04.34598  12 19 46.81   -00 08 46.0   25.0g 16GR390   T09  C~8HFs      
2016 04  04.36164  12 19 46.74   -00 08 45.5   25.0g 16GR390   T09  C~8HFs      
2016 04  04.36800  12 19 46.72   -00 08 45.3   25.0g 16GR390   T09  C~8HFs      
2016 04  04.38727  12 19 46.63   -00 08 44.8   24.6g 16GR390   T09  C~8HFs      
2016 04  04.40648  12 19 46.55   -00 08 44.3   24.7g 16GR390   T09  C~8HFs      
2016 04  04.41295  12 19 46.52   -00 08 43.9   24.9g 16GR390   T09  C~8HFs      
2016 04  04.41948  12 19 46.51   -00 08 43.8   24.7g 16GR390   T09  C~8HFs      
2016 04  15.34534  12 19 02.04   -00 04 02.1   24.3y 16GR390   T09  C~8HFs      
2016 04  15.37727  12 19 01.93   -00 04 01.4   23.5y 16GR390   T09  C~8HFs      
2016 04  15.40543  12 19 01.82   -00 04 00.9   23.7y 16GR390   T09  C~8HFs      
2016 04  15.41093  12 19 01.77   -00 04 00.4   24.3y 16GR390   T09  C~8HFs      
2016 04  15.43760  12 19 01.67   -00 04 00.2   24.0y 16GR390   T09  C~8HFs      
2016 04  15.44858  12 19 01.65   -00 03 59.9   23.5y 16GR390   T09  C~8HFs      
2016 04  15.45396  12 19 01.63   -00 03 59.9   23.5y 16GR390   T09  C~8HFs      
2016 04  15.46204  12 19 01.59   -00 03 59.7   23.1y 16GR390   T09  C~8HFs      
2016 06  04.25196  12 16 48.70   +00 08 53.5   23.5z 16GR390   T09  C~8HFs      
2016 06  04.28656  12 16 48.66   +00 08 53.7   23.5z 16GR390   T09  C~8HFs      
2016 06  04.30544  12 16 48.64   +00 08 53.8   23.8z 16GR390   T09  C~8HFs      
2016 06  04.32707  12 16 48.61   +00 08 54.2   23.9z 16GR390   T09  C~8HFs      
2016 06  04.34057  12 16 48.59   +00 08 54.0   23.4z 16GR390   T09  C~8HFs      
2016 06  04.34327  12 16 48.58   +00 08 54.0   23.6z 16GR390   T09  C~8HFs      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00     0.21       0.00    -0.01
     2   0.0001     -1.89     0.04      -0.16    -0.16
     3   0.0001     -2.03     0.09      -0.22    -0.22
     4   0.0001     -3.90    -0.07      -0.05    -0.03
     5   0.0003     -8.96    -0.04      -0.06     0.01
     6   0.0004     -9.59    -0.11      -0.11    -0.04
     7   0.0054   -133.87     0.03      -0.63    -0.14
     8   0.0054   -135.03    -0.05      -0.59    -0.09
     9   0.0054   -135.39     0.03      -0.52    -0.02
    10   0.0055   -136.83    -0.07      -0.60    -0.08
    11   0.0055   -138.13    -0.04      -0.61    -0.08
    12   0.0055   -138.70    -0.17      -0.43     0.11
    13   0.0056   -138.88     0.11      -0.39     0.15
    14   0.0355   -862.95    -0.26      -6.25     0.24
    15   0.0356   -864.74     0.03      -6.27     0.27
    16   0.0356   -866.45     0.14      -6.46     0.11
    17   0.0356   -867.34    -0.39      -6.30     0.28
    18   0.0357   -868.80    -0.11      -6.71    -0.10
    19   0.0358   -869.19     0.20      -6.55     0.07
    20   0.0358   -869.47     0.28      -6.67    -0.05
    21   0.0358   -870.10     0.17      -6.73    -0.09
    22   0.1721  -3006.84     0.15     -87.24    -0.10
    23   0.1722  -3007.47     0.10     -87.29    -0.06
    24   0.1723  -3007.79     0.10     -87.32    -0.04
    25   0.1723  -3008.36    -0.11     -87.13     0.21
    26   0.1723  -3008.56    -0.08     -87.43    -0.06
    27   0.1724  -3008.69    -0.18     -87.49    -0.11

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.