The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GR391 # Created Wed Nov 27 02:10:38 2024 # Orbit generated from Bernstein formalism # Fitting 16 observations of 16 # Arc: 13.07d # First observation: 2016/04/02 # Last observation: 2016/04/15 Preliminary a, adot, b, bdot, g, gdot: 0.000000 0.042770 0.000000 0.007291 0.028838 0.000000 # WARNING Fitting with energy constraint # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # Chi-squared of fit: 8.88 DOF: 27 RMS: 0.13 # Min/Max residuals: -0.37 0.23 # Exact a, adot, b, bdot, g, gdot: 1.799390E-05 3.060967E-02 4.348922E-06 7.192029E-03 2.686457E-02 5.210761E-03 # Covariance matrix: 1.2208E-11 1.9035E-08 -1.4499E-14 1.6840E-10 3.1313E-09 -2.8558E-08 1.9035E-08 3.0135E-05 -2.2218E-11 2.6580E-07 4.9537E-06 -4.8070E-05 -1.4499E-14 -2.2218E-11 1.6180E-13 -5.1343E-12 -3.6930E-12 -1.5424E-11 1.6840E-10 2.6580E-07 -5.1343E-12 2.7048E-09 4.3735E-08 -3.7321E-07 3.1313E-09 4.9537E-06 -3.6930E-12 4.3735E-08 8.1445E-07 -7.7420E-06 -2.8558E-08 -4.8070E-05 -1.5424E-11 -3.7321E-07 -7.7420E-06 2.7696E-04 # lat0 lon0 xBary yBary zBary JD0 1.934717 -176.503415 -0.160508 0.033313 -0.982025 2457480.887349 # Heliocentric elements and errors Epoch: 2457480.5000 = 2016/04/02 Mean Anomaly: 13.98816 +/- 37.124 Argument of Peri: 333.84454 +/- 99.290 Long of Asc Node: 175.75968 +/- 1.362 Inclination: 13.33464 +/- 2.205 Eccentricity: 0.39950679 +/- 0.3384 Semi-Major Axis: 60.46241795 +/- 25.0149 Time of Perihelion: 2450808.0570 +/- 17217.5 Perihelion: 36.30727144 +/- 25.3839 Aphelion: 84.61756446 +/- 40.5500 Period (y) 470.1500 +/- 291.77 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -38.10796498 +/- 1.2474 Ecliptic Y -2.49179711 +/- 0.0761 Ecliptic Z 1.25688646 +/- 0.0422 Ecliptic XDOT -0.00031469 +/- 0.0017 Ecliptic YDOT -0.00315156 +/- 0.0004 Ecliptic ZDOT 0.00075048 +/- 0.0001 # Distances at JD0 (AU) Heliocenter to KBO 38.21002240 +/- 1.2441 Geocenter to KBO 37.22374427 +/- 1.2505 # Hcoef: 8.55
The following table shows the complete astrometric record for 16GR391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GR391) followed by the observatory code and reference code for the source of the astrometry.
2016 04 02.38656 12 15 54.47 +00 23 07.9 23.7i 16GR391 T09 C~8HFu 2016 04 02.41462 12 15 54.34 +00 23 08.7 23.9i 16GR391 T09 C~8HFu 2016 04 02.43920 12 15 54.22 +00 23 09.7 23.9i 16GR391 T09 C~8HFu 2016 04 02.46633 12 15 54.10 +00 23 10.8 24.0i 16GR391 T09 C~8HFu 2016 04 02.47448 12 15 54.06 +00 23 10.9 24.0i 16GR391 T09 C~8HFu 2016 04 02.52059 12 15 53.84 +00 23 12.4 23.8i 16GR391 T09 C~8HFu 2016 04 04.34312 12 15 45.47 +00 24 13.9 25.2g 16GR391 T09 C~8HFu 2016 04 04.36588 12 15 45.37 +00 24 14.6 25.3g 16GR391 T09 C~8HFu 2016 04 04.39376 12 15 45.22 +00 24 15.6 25.4g 16GR391 T09 C~8HFu 2016 04 04.41084 12 15 45.14 +00 24 16.3 25.1g 16GR391 T09 C~8HFu 2016 04 15.35150 12 14 56.56 +00 30 09.2 24.4y 16GR391 T09 C~8HFu 2016 04 15.36307 12 14 56.50 +00 30 09.8 23.7y 16GR391 T09 C~8HFu 2016 04 15.37454 12 14 56.43 +00 30 10.4 23.9y 16GR391 T09 C~8HFu 2016 04 15.41093 12 14 56.29 +00 30 11.1 23.7y 16GR391 T09 C~8HFu 2016 04 15.45396 12 14 56.10 +00 30 12.8 23.5y 16GR391 T09 C~8HFu 2016 04 15.45934 12 14 56.09 +00 30 12.6 24.4y 16GR391 T09 C~8HFu
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.00 0.00 -0.02 2 0.0001 -2.11 0.09 -0.04 -0.15 3 0.0001 -4.16 -0.03 0.16 -0.02 4 0.0002 -6.25 0.00 0.46 0.19 5 0.0002 -6.84 0.05 0.31 0.02 6 0.0004 -10.46 0.03 0.38 -0.06 7 0.0054 -150.10 0.01 6.98 0.02 8 0.0054 -151.76 0.12 7.02 -0.00 9 0.0055 -154.22 -0.18 7.05 -0.06 10 0.0055 -155.60 -0.23 7.21 0.06 11 0.0355 -964.50 0.23 41.80 -0.14 12 0.0355 -965.57 0.01 41.99 0.03 13 0.0356 -966.77 -0.37 42.13 0.13 14 0.0357 -968.98 0.05 41.94 -0.14 15 0.0358 -972.27 -0.13 42.37 0.18 16 0.0358 -972.32 0.20 42.12 -0.07
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.