Orbit Fit and Astrometric record for 16GS390

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16GS390   
# Created Wed Nov 27 02:10:38 2024
# Orbit generated from Bernstein formalism
# Fitting     12 observations of     12
# Arc:  62.90d
# First observation: 2016/04/02
#  Last observation: 2016/06/04
Preliminary a, adot, b, bdot, g, gdot:
   0.000001   0.021811   0.000000   0.000269   0.021364   0.000000
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# WARNING Fitting with energy constraint
# Chi-squared of fit:     6.12 DOF:     19 RMS:  0.13
# Min/Max residuals:    -0.33    0.22
# Exact a, adot, b, bdot, g, gdot:
  1.446891E-05  1.799661E-02  4.112911E-07  2.336232E-04  2.075191E-02 -5.238275E-03
# Covariance matrix:
  9.3036E-13  7.3085E-10 -4.4038E-15  6.7933E-12  1.3421E-10 -8.2937E-09
  7.3085E-10  7.7949E-07 -4.8393E-12  7.2041E-09  1.3585E-07 -1.1252E-05
 -4.4038E-15 -4.8393E-12  1.6556E-13 -1.0304E-12 -8.3145E-13  7.3939E-11
  6.7933E-12  7.2041E-09 -1.0304E-12  8.9525E-11  1.2581E-09 -1.0313E-07
  1.3421E-10  1.3585E-07 -8.3145E-13  1.2581E-09  2.4249E-08 -1.7664E-06
 -8.2937E-09 -1.1252E-05  7.3939E-11 -1.0313E-07 -1.7664E-06  2.2875E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
    0.681500 -175.311013   -0.139908    0.011865   -0.985660  2457480.880499
# Heliocentric elements and errors
Epoch:              2457480.5000  =  2016/04/02
Mean Anomaly:          290.32251 +/-    98.871
Argument of Peri:      143.91103 +/-    46.591
Long of Asc Node:      142.60225 +/-     1.053
Inclination:             0.99315 +/-     0.020
Eccentricity:         0.27654372 +/-    0.7677
Semi-Major Axis:     50.27580237 +/-   26.4243
Time of Perihelion: 2482682.0316 +/-   29733.0
Perihelion:          36.37234504 +/-   43.0705
Aphelion:            64.17925969 +/-   51.2587
Period (y)              356.4895 +/-    281.05
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -48.99835623 +/-    0.3604
Ecliptic Y           -4.16172941 +/-    0.0295
Ecliptic Z            0.57320030 +/-    0.0043
Ecliptic XDOT         0.00088330 +/-    0.0020
Ecliptic YDOT        -0.00231685 +/-    0.0001
Ecliptic ZDOT         0.00002261 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   49.17811976 +/-    0.3591
Geocenter to KBO     48.18832578 +/-    0.3616
# Hcoef:  8.48

The following table shows the complete astrometric record for 16GS390. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GS390) followed by the observatory code and reference code for the source of the astrometry.

2016 04  02.37971  12 18 17.75   -01 14 16.1   25.0i 16GS390   T09  C~8HFs      
2016 04  02.45821  12 18 17.46   -01 14 14.1   25.3i 16GS390   T09  C~8HFs      
2016 04  02.46093  12 18 17.44   -01 14 14.1   25.0i 16GS390   T09  C~8HFs      
2016 04  02.48284  12 18 17.36   -01 14 13.6   25.1i 16GS390   T09  C~8HFs      
2016 04  02.49093  12 18 17.33   -01 14 13.4   25.4i 16GS390   T09  C~8HFs      
2016 04  02.50710  12 18 17.26   -01 14 12.9   24.7i 16GS390   T09  C~8HFs      
2016 04  04.33742  12 18 10.25   -01 13 27.2   26.2g 16GS390   T09  C~8HFs      
2016 04  04.36164  12 18 10.16   -01 13 27.0   26.0g 16GS390   T09  C~8HFs      
2016 04  04.38088  12 18 10.07   -01 13 26.4   26.3g 16GS390   T09  C~8HFs      
2016 06  04.24853  12 15 27.17   -00 56 16.2   25.0z 16GS390   T09  C~8HFs      
2016 06  04.26496  12 15 27.14   -00 56 16.3   24.4z 16GS390   T09  C~8HFs      
2016 06  04.28388  12 15 27.10   -00 56 15.8   25.2z 16GS390   T09  C~8HFs      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.16       0.00    -0.05
     2   0.0002     -4.79     0.07       0.11     0.10
     3   0.0002     -5.06    -0.03      -0.01    -0.02
     4   0.0003     -6.36     0.07      -0.02    -0.03
     5   0.0003     -6.85     0.09      -0.02    -0.02
     6   0.0003     -8.01    -0.04       0.02     0.03
     7   0.0054   -122.64    -0.06       0.29     0.22
     8   0.0054   -123.96     0.15      -0.06    -0.12
     9   0.0055   -125.44    -0.10      -0.05    -0.10
    10   0.1721  -2776.89     0.22     -23.41     0.09
    11   0.1722  -2777.27     0.11     -23.68    -0.16
    12   0.1722  -2778.02    -0.33     -23.46     0.08

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.