Orbit Fit and Astrometric record for 16GS391

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16GS391   
# Created Wed Nov 27 02:10:38 2024
# Orbit generated from Bernstein formalism
# Fitting     13 observations of     13
# Arc:  13.05d
# First observation: 2016/04/02
#  Last observation: 2016/04/15
Preliminary a, adot, b, bdot, g, gdot:
   0.000000   0.027028   0.000000  -0.000459   0.024830   0.000000
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# WARNING Fitting with energy constraint
# Chi-squared of fit:     7.14 DOF:     21 RMS:  0.13
# Min/Max residuals:    -0.23    0.32
# Exact a, adot, b, bdot, g, gdot:
  1.457239E-05  2.175960E-02  2.914271E-08 -5.060749E-04  2.397946E-02 -8.896575E-03
# Covariance matrix:
  1.3542E-11  1.7803E-08 -5.2212E-14  1.5751E-10  2.9668E-09  1.0486E-08
  1.7803E-08  2.3801E-05 -7.0133E-11  2.1057E-07  3.9626E-06  1.0976E-05
 -5.2212E-14 -7.0133E-11  1.8947E-13 -6.7513E-12 -1.1660E-11 -9.9488E-12
  1.5751E-10  2.1057E-07 -6.7513E-12  2.3565E-09  3.5055E-08  9.2366E-08
  2.9668E-09  3.9626E-06 -1.1660E-11  3.5055E-08  6.5985E-07  1.9724E-06
  1.0486E-08  1.0976E-05 -9.9488E-12  9.2366E-08  1.9724E-06  1.9649E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
    1.797103 -176.992276   -0.169065    0.030908   -0.980670  2457480.897709
# Heliocentric elements and errors
Epoch:              2457480.5000  =  2016/04/02
Mean Anomaly:          298.20455 +/-    66.586
Argument of Peri:      233.17019 +/-    57.163
Long of Asc Node:       55.66315 +/-     8.614
Inclination:             2.21477 +/-     0.257
Eccentricity:         0.37591821 +/-    0.5630
Semi-Major Axis:     44.68179291 +/-   23.4450
Time of Perihelion: 2476206.6407 +/-   13781.0
Perihelion:          27.88509314 +/-   29.1027
Aphelion:            61.47849267 +/-   40.9083
Period (y)              298.6786 +/-    235.08
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -42.59909533 +/-    1.4100
Ecliptic Y           -2.41003643 +/-    0.0740
Ecliptic Z            1.30781968 +/-    0.0443
Ecliptic XDOT         0.00114252 +/-    0.0016
Ecliptic YDOT        -0.00243478 +/-    0.0005
Ecliptic ZDOT        -0.00008960 +/-    0.0001
# Distances at JD0 (AU)
Heliocenter to KBO   42.68725326 +/-    1.4071
Geocenter to KBO     41.70235156 +/-    1.4127
# Hcoef:  8.02

The following table shows the complete astrometric record for 16GS391. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GS391) followed by the observatory code and reference code for the source of the astrometry.

2016 04  02.39692  12 13 53.73   +00 27 11.8   23.8i 16GS391   T09  C~8HFu      
2016 04  02.49633  12 13 53.28   +00 27 14.5   23.7i 16GS391   T09  C~8HFu      
2016 04  02.49902  12 13 53.29   +00 27 14.5   23.7i 16GS391   T09  C~8HFu      
2016 04  02.52059  12 13 53.17   +00 27 15.4   23.7i 16GS391   T09  C~8HFu      
2016 04  04.34312  12 13 45.19   +00 28 05.9   25.0g 16GS391   T09  C~8HFu      
2016 04  04.35168  12 13 45.14   +00 28 06.1   25.3g 16GS391   T09  C~8HFu      
2016 04  04.36588  12 13 45.08   +00 28 06.4   25.5g 16GS391   T09  C~8HFu      
2016 04  04.39376  12 13 44.96   +00 28 07.3   25.2g 16GS391   T09  C~8HFu      
2016 04  04.41084  12 13 44.89   +00 28 07.8   25.4g 16GS391   T09  C~8HFu      
2016 04  15.35150  12 12 58.37   +00 32 57.4   23.7y 16GS391   T09  C~8HFu      
2016 04  15.37454  12 12 58.28   +00 32 57.7   23.6y 16GS391   T09  C~8HFu      
2016 04  15.40815  12 12 58.17   +00 32 58.7   23.5y 16GS391   T09  C~8HFu      
2016 04  15.45127  12 12 57.96   +00 32 59.7   23.6y 16GS391   T09  C~8HFu      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.05       0.00    -0.07
     2   0.0003     -7.27    -0.07      -0.20    -0.16
     3   0.0003     -7.13     0.26      -0.14    -0.10
     4   0.0003     -9.14    -0.18      -0.03     0.04
     5   0.0053   -139.05     0.06      -1.24     0.12
     6   0.0054   -139.81    -0.09      -1.35     0.02
     7   0.0054   -140.76    -0.01      -1.43    -0.05
     8   0.0055   -142.77    -0.00      -1.32     0.10
     9   0.0055   -143.93     0.07      -1.28     0.16
    10   0.0355   -899.33    -0.23     -12.68     0.06
    11   0.0355   -900.69    -0.03     -12.94    -0.16
    12   0.0356   -902.60     0.32     -12.68     0.16
    13   0.0357   -905.89    -0.06     -13.01    -0.10

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.