The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GS392 # Created Wed Nov 27 02:10:38 2024 # Orbit generated from Bernstein formalism # Fitting 11 observations of 11 # Arc: 6.14d # First observation: 2016/04/02 # Last observation: 2016/04/08 # WARNING Fitting with energy constraint # WARNING and with gdot fixed = 0 # Chi-squared of fit: 5.04 DOF: 18 RMS: 0.12 # Min/Max residuals: -0.22 0.23 # Exact a, adot, b, bdot, g, gdot: 1.147344E-05 1.451936E-02 -4.092247E-06 -5.103567E-03 1.825565E-02 0.000000E+00 # Covariance matrix: 2.4673E-11 2.7920E-08 3.4137E-14 2.0443E-11 4.5398E-09 0.0000E+00 2.7920E-08 3.1843E-05 3.8911E-11 2.3304E-08 5.1750E-06 0.0000E+00 3.4137E-14 3.8911E-11 1.7074E-13 -1.1197E-11 6.3244E-12 0.0000E+00 2.0443E-11 2.3304E-08 -1.1197E-11 3.4112E-09 3.7877E-09 0.0000E+00 4.5398E-09 5.1750E-06 6.3244E-12 3.7877E-09 8.4111E-07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.0060E-05 # lat0 lon0 xBary yBary zBary JD0 0.161504 -176.458851 -0.159567 0.002911 -0.982735 2457480.877079 # Heliocentric elements and errors Epoch: 2457480.5000 = 2016/04/02 Mean Anomaly: 16.52245 +/- 358.365 Argument of Peri: 162.66448 +/- 65.751 Long of Asc Node: 4.15977 +/- 0.184 Inclination: 19.31039 +/- 6.947 Eccentricity: 0.01009639 +/- 0.5486 Semi-Major Axis: 56.30898927 +/- 28.2454 Time of Perihelion: 2450397.1783 +/- 1388305.8 Perihelion: 55.74047152 +/- 41.6666 Aphelion: 56.87750701 +/- 42.0514 Period (y) 422.5468 +/- 317.93 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -55.64749501 +/- 2.7467 Ecliptic Y -3.60597743 +/- 0.1697 Ecliptic Z 0.15420242 +/- 0.0077 Ecliptic XDOT 0.00013245 +/- 0.0013 Ecliptic YDOT -0.00218047 +/- 0.0007 Ecliptic ZDOT -0.00076539 +/- 0.0000 # Distances at JD0 (AU) Heliocenter to KBO 55.76442013 +/- 2.7409 Geocenter to KBO 54.77755981 +/- 2.7519 # Hcoef: 8.41
The following table shows the complete astrometric record for 16GS392. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GS392) followed by the observatory code and reference code for the source of the astrometry.
2016 04 02.37629 12 13 15.30 -01 15 34.6 25.5i 16GS392 T09 C~8Mck 2016 04 02.40651 12 13 15.19 -01 15 33.7 25.4i 16GS392 T09 C~8Mck 2016 04 02.43106 12 13 15.10 -01 15 33.4 25.4i 16GS392 T09 C~8Mck 2016 04 02.45551 12 13 14.99 -01 15 32.9 25.4i 16GS392 T09 C~8Mck 2016 04 02.45821 12 13 14.99 -01 15 32.9 25.5i 16GS392 T09 C~8Mck 2016 04 02.48823 12 13 14.88 -01 15 32.4 25.5i 16GS392 T09 C~8Mck 2016 04 02.50441 12 13 14.83 -01 15 31.7 25.9i 16GS392 T09 C~8Mck 2016 04 04.37876 12 13 08.31 -01 14 55.6 26.7g 16GS392 T09 C~8Mck 2016 04 04.39802 12 13 08.24 -01 14 55.1 26.4g 16GS392 T09 C~8Mck 2016 04 08.50164 12 12 54.10 -01 13 36.6 25.7r 16GS392 T09 C~8Mck 2016 04 08.51580 12 12 54.06 -01 13 36.2 25.6r 16GS392 T09 C~8Mck
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.23 0.00 -0.07 2 0.0001 -1.87 0.07 0.17 0.20 3 0.0001 -3.23 0.11 -0.09 0.02 4 0.0002 -4.94 -0.22 -0.29 -0.09 5 0.0002 -4.94 -0.06 -0.29 -0.08 6 0.0003 -6.65 -0.08 -0.48 -0.18 7 0.0004 -7.62 -0.13 -0.14 0.21 8 0.0055 -111.69 0.09 -5.84 -0.06 9 0.0055 -112.85 0.02 -5.79 0.04 10 0.0168 -338.64 -0.05 -17.96 -0.08 11 0.0168 -339.35 0.02 -17.83 0.09
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.