Orbit Fit and Astrometric record for 16GT392

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16GT392   
# Created Wed Nov 27 02:10:38 2024
# Orbit generated from Bernstein formalism
# Fitting     12 observations of     12
# Arc:   6.15d
# First observation: 2016/04/02
#  Last observation: 2016/04/08
Preliminary a, adot, b, bdot, g, gdot:
  -0.000000   0.035924  -0.000000  -0.000484   0.024320   0.000000
# WARNING Fitting with energy constraint
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# Chi-squared of fit:     4.91 DOF:     19 RMS:  0.11
# Min/Max residuals:    -0.25    0.22
# Exact a, adot, b, bdot, g, gdot:
  1.427570E-05  2.021176E-02 -3.825243E-07 -5.123597E-04  2.177864E-02  4.133542E-03
# Covariance matrix:
  6.8580E-11  9.2999E-08  1.4322E-13  1.6701E-10  1.5041E-08 -2.1761E-07
  9.2999E-08  1.2650E-04  1.9478E-10  2.2715E-07  2.0455E-05 -2.9716E-04
  1.4322E-13  1.9478E-10  1.8783E-13 -1.2830E-11  3.1497E-11 -4.5526E-10
  1.6701E-10  2.2715E-07 -1.2830E-11  3.0775E-09  3.6730E-08 -5.3692E-07
  1.5041E-08  2.0455E-05  3.1497E-11  3.6730E-08  3.3077E-06 -4.7933E-05
 -2.1761E-07 -2.9716E-04 -4.5526E-10 -5.3692E-07 -4.7933E-05  1.0862E-03
#      lat0       lon0       xBary       yBary       zBary        JD0
    0.476812 -176.179622   -0.154776    0.008326   -0.983470  2457480.877079
# Heliocentric elements and errors
Epoch:              2457480.5000  =  2016/04/02
Mean Anomaly:           58.71106 +/-   116.263
Argument of Peri:       79.66259 +/-   273.177
Long of Asc Node:       21.86945 +/-     9.992
Inclination:             1.52189 +/-     0.825
Eccentricity:         0.21522863 +/-    1.5127
Semi-Major Axis:     50.56882518 +/-   26.1157
Time of Perihelion: 2436059.4790 +/-   39038.6
Perihelion:          39.68496617 +/-   79.1915
Aphelion:            61.45268419 +/-   82.8159
Period (y)              359.6106 +/-    278.58
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -46.78765420 +/-    3.8258
Ecliptic Y           -3.28191794 +/-    0.2551
Ecliptic Z            0.38211418 +/-    0.0319
Ecliptic XDOT        -0.00034960 +/-    0.0042
Ecliptic YDOT        -0.00257687 +/-    0.0010
Ecliptic ZDOT        -0.00006008 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   46.90417447 +/-    3.8163
Geocenter to KBO     45.91654074 +/-    3.8344
# Hcoef:  9.09

The following table shows the complete astrometric record for 16GT392. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GT392) followed by the observatory code and reference code for the source of the astrometry.

2016 04  02.37629  12 14 46.87   -01 04 51.9   24.8i 16GT392   T09  C~8Mck      
2016 04  02.43106  12 14 46.64   -01 04 50.6   24.8i 16GT392   T09  C~8Mck      
2016 04  02.43374  12 14 46.62   -01 04 50.6   25.5i 16GT392   T09  C~8Mck      
2016 04  02.45821  12 14 46.53   -01 04 49.7   25.1i 16GT392   T09  C~8Mck      
2016 04  02.50441  12 14 46.35   -01 04 48.4   25.9i 16GT392   T09  C~8Mck      
2016 04  02.51252  12 14 46.32   -01 04 48.4   25.6i 16GT392   T09  C~8Mck      
2016 04  04.33458  12 14 39.07   -01 04 02.2   26.4g 16GT392   T09  C~8Mck      
2016 04  04.35952  12 14 38.96   -01 04 01.5   25.8g 16GT392   T09  C~8Mck      
2016 04  04.40435  12 14 38.79   -01 04 00.2   26.5g 16GT392   T09  C~8Mck      
2016 04  08.50164  12 14 22.69   -01 02 17.7   25.8r 16GT392   T09  C~8Mck      
2016 04  08.50945  12 14 22.65   -01 02 17.7   25.9r 16GT392   T09  C~8Mck      
2016 04  08.52425  12 14 22.58   -01 02 17.4   26.4r 16GT392   T09  C~8Mck      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00     0.08       0.00     0.00
     2   0.0001     -3.68     0.02      -0.18    -0.13
     3   0.0002     -3.96    -0.08      -0.30    -0.25
     4   0.0002     -5.55    -0.05      -0.00     0.07
     5   0.0004     -8.55     0.00       0.12     0.22
     6   0.0004     -8.96     0.13      -0.06     0.05
     7   0.0054   -127.10     0.02      -0.82    -0.06
     8   0.0054   -128.89    -0.14      -0.83    -0.05
     9   0.0056   -131.75    -0.05      -0.65     0.17
    10   0.0168   -394.05     0.09      -2.43     0.19
    11   0.0168   -394.60     0.04      -2.67    -0.04
    12   0.0168   -395.69    -0.09      -2.81    -0.17

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.