The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GV368 # Created Wed Nov 27 02:10:37 2024 # Orbit generated from Bernstein formalism # Fitting 18 observations of 18 # Arc: 63.93d # First observation: 2016/04/02 # Last observation: 2016/06/05 Preliminary a, adot, b, bdot, g, gdot: -0.000001 0.021990 0.000002 0.000037 0.021767 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 5.53 DOF: 31 RMS: 0.10 # Min/Max residuals: -0.36 0.17 # Exact a, adot, b, bdot, g, gdot: 1.323846E-05 1.842052E-02 1.730371E-06 -7.225486E-06 2.122342E-02 -3.741862E-03 # Covariance matrix: 6.8034E-13 4.9006E-10 -8.6581E-15 5.9197E-12 8.5700E-11 -6.7945E-09 4.9006E-10 7.6629E-07 -1.4488E-11 9.4216E-09 1.1690E-07 -1.6135E-05 -8.6581E-15 -1.4488E-11 1.8824E-13 -1.2798E-12 -2.1721E-12 3.1761E-10 5.9197E-12 9.4216E-09 -1.2798E-12 1.2745E-10 1.4301E-09 -2.0076E-07 8.5700E-11 1.1690E-07 -2.1721E-12 1.4301E-09 1.8487E-08 -2.2463E-06 -6.7945E-09 -1.6135E-05 3.1761E-10 -2.0076E-07 -2.2463E-06 4.1062E-04 # lat0 lon0 xBary yBary zBary JD0 0.842927 -174.895855 -0.133272 0.014653 -0.986552 2457480.909989 # Heliocentric elements and errors Epoch: 2457480.5000 = 2016/04/02 Mean Anomaly: 269.96468 +/- 188.726 Argument of Peri: 204.24330 +/- 131.184 Long of Asc Node: 93.30864 +/- 1.492 Inclination: 0.82618 +/- 0.001 Eccentricity: 0.19921113 +/- 0.9159 Semi-Major Axis: 46.31182036 +/- 20.9409 Time of Perihelion: 2486270.8280 +/- 57101.7 Perihelion: 37.08599027 +/- 45.6124 Aphelion: 55.53765045 +/- 49.2943 Period (y) 315.1708 +/- 213.77 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -47.90045156 +/- 0.3006 Ecliptic Y -4.41463220 +/- 0.0268 Ecliptic Z 0.69327041 +/- 0.0044 Ecliptic XDOT 0.00069224 +/- 0.0026 Ecliptic YDOT -0.00233089 +/- 0.0001 Ecliptic ZDOT -0.00000803 +/- 0.0000 # Distances at JD0 (AU) Heliocenter to KBO 48.10844896 +/- 0.2993 Geocenter to KBO 47.11776473 +/- 0.3019 # Hcoef: 7.76
The following table shows the complete astrometric record for 16GV368. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GV368) followed by the observatory code and reference code for the source of the astrometry.
2016 04 02.40920 12 20 04.60 -01 15 15.0 24.0i 16GV368 T09 C~89Td 2016 04 02.48554 12 20 04.30 -01 15 12.6 24.5i 16GV368 T09 C~89Td 2016 04 02.49093 12 20 04.27 -01 15 12.6 24.3i 16GV368 T09 C~89Td 2016 04 02.50710 12 20 04.21 -01 15 12.1 23.9i 16GV368 T09 C~89Td 2016 04 04.33742 12 19 57.02 -01 14 25.9 25.4g 16GV368 T09 C~89Td 2016 04 04.34027 12 19 57.01 -01 14 25.6 25.9g 16GV368 T09 C~89Td 2016 04 04.36164 12 19 56.93 -01 14 25.1 25.4g 16GV368 T09 C~89Td 2016 04 04.38302 12 19 56.84 -01 14 24.7 25.1g 16GV368 T09 C~89Td 2016 06 04.24853 12 17 08.71 -00 56 59.2 24.0z 16GV368 T09 C~89Td 2016 06 04.26496 12 17 08.68 -00 56 59.0 24.5z 16GV368 T09 C~89Td 2016 06 04.26765 12 17 08.68 -00 56 59.0 24.4z 16GV368 T09 C~89Td 2016 06 04.28388 12 17 08.66 -00 56 58.8 24.3z 16GV368 T09 C~89Td 2016 06 04.30006 12 17 08.65 -00 56 58.8 24.1z 16GV368 T09 C~89Td 2016 06 04.32166 12 17 08.63 -00 56 58.8 24.0z 16GV368 T09 C~89Td 2016 06 04.33517 12 17 08.62 -00 56 58.7 24.3z 16GV368 T09 C~89Td 2016 06 05.30579 12 17 07.68 -00 56 53.6 24.5r 16GV368 T09 C~89Td 2016 06 05.32218 12 17 07.67 -00 56 53.6 24.6r 16GV368 T09 C~89Td 2016 06 05.33492 12 17 07.64 -00 56 53.5 24.7r 16GV368 T09 C~89Td
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.10 0.00 -0.36 2 0.0002 -5.08 0.01 0.42 0.11 3 0.0002 -5.49 -0.05 0.24 -0.07 4 0.0003 -6.52 -0.02 0.34 0.04 5 0.0053 -123.82 0.00 0.03 -0.05 6 0.0053 -124.08 -0.07 0.25 0.17 7 0.0053 -125.38 0.02 0.23 0.16 8 0.0054 -126.78 0.01 0.06 0.01 9 0.1720 -2856.32 0.12 -39.66 -0.05 10 0.1721 -2856.81 -0.10 -39.65 -0.02 11 0.1721 -2856.81 -0.05 -39.65 -0.01 12 0.1721 -2857.16 -0.13 -39.59 0.07 13 0.1722 -2857.30 0.00 -39.65 0.04 14 0.1722 -2857.58 0.09 -39.77 -0.05 15 0.1723 -2857.75 0.14 -39.74 -0.00 16 0.1749 -2872.72 -0.02 -40.64 0.05 17 0.1750 -2872.86 0.10 -40.70 0.01 18 0.1750 -2873.31 -0.15 -40.79 -0.06
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.