The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GX369 # Created Wed Nov 27 02:10:38 2024 # Orbit generated from Bernstein formalism # Fitting 11 observations of 11 # Arc: 25.98d # First observation: 2016/03/16 # Last observation: 2016/04/11 Preliminary a, adot, b, bdot, g, gdot: -0.000000 0.023100 -0.000001 0.000246 0.023167 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 5.22 DOF: 17 RMS: 0.12 # Min/Max residuals: -0.17 0.25 # Exact a, adot, b, bdot, g, gdot: 1.388384E-05 2.067583E-02 -6.860894E-07 4.429477E-04 2.266936E-02 -8.228882E-03 # Covariance matrix: 1.6322E-12 1.7111E-09 -1.5798E-13 -1.4470E-10 3.0671E-10 8.1248E-09 1.7111E-09 2.5574E-06 -2.3485E-10 -2.1545E-07 4.5564E-07 1.1445E-05 -1.5798E-13 -2.3485E-10 4.9704E-13 1.2661E-11 -4.1889E-11 -1.0866E-09 -1.4470E-10 -2.1545E-07 1.2661E-11 1.8301E-08 -3.8370E-08 -9.5151E-07 3.0671E-10 4.5564E-07 -4.1889E-11 -3.8370E-08 8.1325E-08 2.1508E-06 8.1248E-09 1.1445E-05 -1.0866E-09 -9.5151E-07 2.1508E-06 1.3784E-04 # lat0 lon0 xBary yBary zBary JD0 12.071593 -150.355337 0.548381 0.172838 -0.807535 2457464.071559 # Heliocentric elements and errors Epoch: 2457460.5000 = 2016/03/13 Mean Anomaly: 306.54501 +/- 43.661 Argument of Peri: 182.44621 +/- 11.414 Long of Asc Node: 125.10420 +/- 1.945 Inclination: 11.91645 +/- 0.045 Eccentricity: 0.39049916 +/- 0.5301 Semi-Major Axis: 49.95606740 +/- 21.0222 Time of Perihelion: 2476610.4005 +/- 9926.5 Perihelion: 30.44826525 +/- 29.4166 Aphelion: 69.46386956 +/- 39.4415 Period (y) 353.0942 +/- 222.88 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -38.48317677 +/- 0.4716 Ecliptic Y -21.27070198 +/- 0.2684 Ecliptic Z 9.22539164 +/- 0.1161 Ecliptic XDOT 0.00208943 +/- 0.0012 Ecliptic YDOT -0.00169099 +/- 0.0008 Ecliptic ZDOT -0.00015552 +/- 0.0003 # Distances at JD0 (AU) Heliocenter to KBO 44.92778103 +/- 0.4242 Geocenter to KBO 44.11239768 +/- 0.5549 # Hcoef: 8.24
The following table shows the complete astrometric record for 16GX369. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GX369) followed by the observatory code and reference code for the source of the astrometry.
2016 03 16.57077 14 07 12.04 -00 01 47.5 24.4z 16GX369 T09 C~89Tf 2016 03 16.57907 14 07 11.99 -00 01 47.4 23.9z 16GX369 T09 C~89Tf 2016 03 16.60339 14 07 11.92 -00 01 46.9 23.9z 16GX369 T09 C~89Tf 2016 04 08.53538 14 05 46.27 +00 08 53.3 25.2r 16GX369 T09 C~89Tf 2016 04 08.54746 14 05 46.22 +00 08 53.5 24.8r 16GX369 T09 C~89Tf 2016 04 08.57093 14 05 46.14 +00 08 54.0 24.6r 16GX369 T09 C~89Tf 2016 04 08.57305 14 05 46.12 +00 08 54.4 25.2r 16GX369 T09 C~89Tf 2016 04 11.46218 14 05 34.10 +00 10 10.6 24.8i 16GX369 T09 C~89Tf 2016 04 11.50846 14 05 33.90 +00 10 12.0 25.2i 16GX369 T09 C~89Tf 2016 04 11.53541 14 05 33.80 +00 10 12.6 24.0i 16GX369 T09 C~89Tf 2016 04 11.55443 14 05 33.70 +00 10 13.3 24.3i 16GX369 T09 C~89Tf
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.11 0.00 0.21 2 0.0000 -0.74 -0.16 -0.17 -0.04 3 0.0001 -1.90 0.04 -0.06 -0.16 4 0.0629 -1428.78 -0.11 156.52 0.02 5 0.0629 -1429.55 -0.06 156.45 -0.10 6 0.0630 -1430.85 0.25 156.50 -0.12 7 0.0630 -1431.27 -0.03 156.77 0.14 8 0.0709 -1626.80 0.02 165.94 -0.12 9 0.0710 -1630.10 -0.08 166.22 0.04 10 0.0711 -1631.72 0.17 166.27 0.02 11 0.0711 -1633.37 -0.17 166.40 0.11
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.