The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GX390 # Created Wed Nov 27 02:10:38 2024 # Orbit generated from Bernstein formalism # Fitting 9 observations of 9 # Arc: 6.14d # First observation: 2016/04/02 # Last observation: 2016/04/08 Preliminary a, adot, b, bdot, g, gdot: 0.000000 0.029507 -0.000000 -0.000114 0.024350 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 2.07 DOF: 13 RMS: 0.08 # Min/Max residuals: -0.13 0.13 # Exact a, adot, b, bdot, g, gdot: 1.551401E-05 2.216670E-02 -2.667182E-07 -1.454483E-04 2.316911E-02 1.068763E-03 # Covariance matrix: 6.5572E-11 9.6430E-08 1.0067E-13 4.1963E-10 1.5425E-08 -7.0037E-07 9.6430E-08 1.4270E-04 1.4852E-10 6.2094E-07 2.2813E-05 -1.0621E-03 1.0067E-13 1.4852E-10 3.1783E-13 -2.2195E-11 2.3771E-11 -1.0244E-09 4.1963E-10 6.2094E-07 -2.2195E-11 6.0813E-09 9.9260E-08 -4.6426E-06 1.5425E-08 2.2813E-05 2.3771E-11 9.9260E-08 3.6476E-06 -1.6809E-04 -7.0037E-07 -1.0621E-03 -1.0244E-09 -4.6426E-06 -1.6809E-04 1.3000E-02 # lat0 lon0 xBary yBary zBary JD0 1.219300 -175.944333 -0.150913 0.021081 -0.983883 2457480.887349 # Heliocentric elements and errors Epoch: 2457480.5000 = 2016/04/02 Mean Anomaly: 55.59668 +/- 232.207 Argument of Peri: 46.02239 +/- 105.408 Long of Asc Node: 76.66530 +/- 12.542 Inclination: 1.25047 +/- 0.089 Eccentricity: 0.06050976 +/- 4.3010 Semi-Major Axis: 45.58801769 +/- 23.1666 Time of Perihelion: 2440117.6557 +/- 746969.0 Perihelion: 42.82949787 +/- 197.2800 Aphelion: 48.34653750 +/- 197.6090 Period (y) 307.8111 +/- 234.63 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -44.01778429 +/- 3.5481 Ecliptic Y -3.27474301 +/- 0.2513 Ecliptic Z 0.91844054 +/- 0.0757 Ecliptic XDOT 0.00005905 +/- 0.0135 Ecliptic YDOT -0.00262878 +/- 0.0007 Ecliptic ZDOT -0.00001449 +/- 0.0003 # Distances at JD0 (AU) Heliocenter to KBO 44.14898423 +/- 3.5376 Geocenter to KBO 43.16092148 +/- 3.5578 # Hcoef: 8.45
The following table shows the complete astrometric record for 16GX390. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GX390) followed by the observatory code and reference code for the source of the astrometry.
2016 04 02.38656 12 16 49.43 -00 29 34.6 24.2i 16GX390 T09 C~8HFs 2016 04 02.41462 12 16 49.31 -00 29 33.9 24.2i 16GX390 T09 C~8HFs 2016 04 02.45821 12 16 49.13 -00 29 32.9 24.6i 16GX390 T09 C~8HFs 2016 04 04.36164 12 16 41.11 -00 28 41.3 26.2g 16GX390 T09 C~8HFs 2016 04 04.38727 12 16 41.00 -00 28 40.8 25.8g 16GX390 T09 C~8HFs 2016 04 04.40435 12 16 40.94 -00 28 40.3 25.9g 16GX390 T09 C~8HFs 2016 04 08.50449 12 16 23.86 -00 26 51.8 24.2r 16GX390 T09 C~8HFs 2016 04 08.50945 12 16 23.84 -00 26 51.5 24.0r 16GX390 T09 C~8HFs 2016 04 08.52425 12 16 23.77 -00 26 51.1 24.8r 16GX390 T09 C~8HFs
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.08 0.00 0.03 2 0.0001 -1.93 -0.04 -0.07 -0.01 3 0.0002 -4.80 0.13 -0.23 -0.13 4 0.0054 -135.70 -0.10 -0.59 0.13 5 0.0055 -137.41 -0.04 -0.79 -0.04 6 0.0055 -138.44 0.13 -0.69 0.07 7 0.0167 -416.65 0.08 -2.75 -0.11 8 0.0168 -417.04 0.02 -2.60 0.05 9 0.0168 -418.17 -0.10 -2.65 0.01
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.