Orbit Fit and Astrometric record for 16GY368

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16GY368   
# Created Wed Nov 27 02:10:37 2024
# Orbit generated from Bernstein formalism
# Fitting     16 observations of     16
# Arc:  63.97d
# First observation: 2016/04/02
#  Last observation: 2016/06/05
Preliminary a, adot, b, bdot, g, gdot:
  -0.000000   0.029157  -0.000000   0.000738   0.025237   0.000000
# WARNING Fitting with energy constraint
# Chi-squared of fit:     7.74 DOF:     27 RMS:  0.12
# Min/Max residuals:    -0.41    0.24
# Exact a, adot, b, bdot, g, gdot:
  1.571431E-05  2.362571E-02  2.723564E-07  6.297438E-04  2.438908E-02  9.042885E-03
# Covariance matrix:
  7.8068E-13  4.4150E-10 -1.8933E-14  8.8522E-12  8.4588E-11 -3.0563E-09
  4.4150E-10  5.3941E-07 -2.3658E-11  1.0653E-08  8.9911E-08 -7.5504E-06
 -1.8933E-14 -2.3658E-11  1.9090E-13 -1.5778E-12 -3.9207E-12  3.3777E-10
  8.8522E-12  1.0653E-08 -1.5778E-12  2.2322E-10  1.7810E-09 -1.4759E-07
  8.4588E-11  8.9911E-08 -3.9207E-12  1.7810E-09  1.5501E-08 -1.1095E-06
 -3.0563E-09 -7.5504E-06  3.3777E-10 -1.4759E-07 -1.1095E-06  1.4898E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
    1.505181 -173.874745   -0.115216    0.026117   -0.988578  2457480.883919
# Heliocentric elements and errors
Epoch:              2457480.5000  =  2016/04/02
Mean Anomaly:           46.67055 +/-    35.063
Argument of Peri:      314.08928 +/-     8.335
Long of Asc Node:      142.51880 +/-     0.617
Inclination:             2.12409 +/-     0.024
Eccentricity:         0.38584020 +/-    0.5100
Semi-Major Axis:     49.44067697 +/-   20.8917
Time of Perihelion: 2441019.1503 +/-    6639.3
Perihelion:          30.36447638 +/-   28.2924
Aphelion:            68.51687757 +/-   38.3938
Period (y)              347.6441 +/-    220.35
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -41.72849831 +/-    0.2080
Ecliptic Y           -4.59626046 +/-    0.0223
Ecliptic Z            1.07704602 +/-    0.0055
Ecliptic XDOT        -0.00072404 +/-    0.0014
Ecliptic YDOT        -0.00275208 +/-    0.0001
Ecliptic ZDOT         0.00009734 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   41.99468073 +/-    0.2067
Geocenter to KBO     41.00196041 +/-    0.2093
# Hcoef:  9.34

The following table shows the complete astrometric record for 16GY368. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GY368) followed by the observatory code and reference code for the source of the astrometry.

2016 04  02.38313  12 24 52.58   -01 03 00.9   25.1i 16GY368   T09  C~89Td      
2016 04  02.41191  12 24 52.46   -01 03 00.1   24.7i 16GY368   T09  C~89Td      
2016 04  02.49363  12 24 52.09   -01 02 57.7   25.6i 16GY368   T09  C~89Td      
2016 04  04.34027  12 24 43.88   -01 02 04.5   26.1g 16GY368   T09  C~89Td      
2016 04  04.36377  12 24 43.80   -01 02 04.0   26.5g 16GY368   T09  C~89Td      
2016 04  04.40858  12 24 43.58   -01 02 02.6   26.3g 16GY368   T09  C~89Td      
2016 04  04.41735  12 24 43.55   -01 02 02.3   25.6g 16GY368   T09  C~89Td      
2016 04  04.50037  12 24 43.16   -01 02 00.4   25.8g 16GY368   T09  C~89Td      
2016 06  04.32166  12 21 32.59   -00 42 30.8   25.2z 16GY368   T09  C~89Td      
2016 06  04.33787  12 21 32.55   -00 42 31.1   25.1z 16GY368   T09  C~89Td      
2016 06  05.31150  12 21 31.49   -00 42 25.7   25.5r 16GY368   T09  C~89Td      
2016 06  05.32218  12 21 31.48   -00 42 25.7   26.0r 16GY368   T09  C~89Td      
2016 06  05.32429  12 21 31.47   -00 42 25.7   25.9r 16GY368   T09  C~89Td      
2016 06  05.33704  12 21 31.46   -00 42 25.7   25.7r 16GY368   T09  C~89Td      
2016 06  05.34129  12 21 31.45   -00 42 25.6   25.9r 16GY368   T09  C~89Td      
2016 06  05.35188  12 21 31.44   -00 42 25.4   25.0r 16GY368   T09  C~89Td      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.08       0.00     0.03
     2   0.0001     -1.97     0.08       0.02     0.06
     3   0.0003     -8.02     0.07       0.03     0.10
     4   0.0054   -142.15    -0.22       0.19     0.03
     5   0.0054   -143.45     0.21       0.17     0.02
     6   0.0055   -147.03    -0.08       0.15     0.03
     7   0.0056   -147.56     0.03       0.25     0.13
     8   0.0058   -153.69     0.00      -0.32    -0.41
     9   0.1723  -3241.69     0.09     -57.14     0.24
    10   0.1724  -3242.12    -0.04     -57.65    -0.24
    11   0.1750  -3258.87     0.01     -58.99     0.05
    12   0.1751  -3259.00     0.06     -59.05     0.01
    13   0.1751  -3259.14    -0.04     -59.11    -0.05
    14   0.1751  -3259.28     0.05     -59.17    -0.08
    15   0.1751  -3259.46    -0.05     -59.13    -0.04
    16   0.1751  -3259.67    -0.09     -59.01     0.11

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.