Orbit Fit and Astrometric record for 16GY390

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16GY390   
# Created Wed Nov 27 02:10:38 2024
# Orbit generated from Bernstein formalism
# Fitting     11 observations of     11
# Arc:   6.10d
# First observation: 2016/04/02
#  Last observation: 2016/04/08
Preliminary a, adot, b, bdot, g, gdot:
   0.000000   0.058180   0.000000  -0.019908   0.040976   0.000000
# WARNING Fitting with energy constraint
# Chi-squared of fit:     2.96 DOF:     17 RMS:  0.09
# Min/Max residuals:    -0.18    0.20
# Exact a, adot, b, bdot, g, gdot:
  1.775807E-05  4.254896E-02 -7.930184E-06 -1.999343E-02  3.845581E-02 -7.891552E-03
# Covariance matrix:
  4.6443E-11  1.0813E-07  1.9543E-14  4.7806E-10  1.7610E-08  7.7350E-09
  1.0813E-07  2.5350E-04  3.7867E-11  1.1287E-06  4.1266E-05 -5.3065E-06
  1.9543E-14  3.7867E-11  2.6397E-13 -1.8399E-11  6.5788E-12  7.7257E-10
  4.7806E-10  1.1287E-06 -1.8399E-11  7.8705E-09  1.8331E-07 -8.0914E-07
  1.7610E-08  4.1266E-05  6.5788E-12  1.8331E-07  6.7183E-06  3.5958E-07
  7.7350E-09 -5.3065E-06  7.7257E-10 -8.0914E-07  3.5958E-07  2.2824E-03
#      lat0       lon0       xBary       yBary       zBary        JD0
    1.204271 -176.654243   -0.163862    0.020775   -0.981830  2457480.931849
# Heliocentric elements and errors
Epoch:              2457480.5000  =  2016/04/02
Mean Anomaly:          297.99117 +/-   116.722
Argument of Peri:      257.80792 +/-   151.415
Long of Asc Node:        6.17211 +/-     0.948
Inclination:            25.13209 +/-     8.283
Eccentricity:         0.16814068 +/-    1.0347
Semi-Major Axis:     28.54295781 +/-   15.1124
Time of Perihelion: 2467074.4600 +/-   16373.0
Perihelion:          23.74372535 +/-   32.0986
Aphelion:            33.34219026 +/-   34.4082
Period (y)              152.4954 +/-    121.11
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -26.92837975 +/-    1.7493
Ecliptic Y           -1.74068767 +/-    0.1021
Ecliptic Z            0.54634305 +/-    0.0368
Ecliptic XDOT         0.00070779 +/-    0.0034
Ecliptic YDOT        -0.00300004 +/-    0.0009
Ecliptic ZDOT        -0.00143491 +/-    0.0001
# Distances at JD0 (AU)
Heliocenter to KBO   26.99011152 +/-    1.7453
Geocenter to KBO     26.00387588 +/-    1.7527
# Hcoef: 10.27

The following table shows the complete astrometric record for 16GY390. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GY390) followed by the observatory code and reference code for the source of the astrometry.

2016 04  02.43106  12 14 11.65   -00 13 30.0   24.1i 16GY390   T09  C~8HFs      
2016 04  02.43920  12 14 11.60   -00 13 29.7   24.0i 16GY390   T09  C~8HFs      
2016 04  02.46363  12 14 11.42   -00 13 29.0   23.8i 16GY390   T09  C~8HFs      
2016 04  02.48823  12 14 11.24   -00 13 28.0   23.8i 16GY390   T09  C~8HFs      
2016 04  04.34312  12 13 58.14   -00 12 26.9   25.4g 16GY390   T09  C~8HFs      
2016 04  04.35952  12 13 58.03   -00 12 26.0   25.2g 16GY390   T09  C~8HFs      
2016 04  04.38515  12 13 57.84   -00 12 25.2   25.5g 16GY390   T09  C~8HFs      
2016 04  08.50449  12 13 29.07   -00 10 12.3   24.7r 16GY390   T09  C~8HFs      
2016 04  08.50945  12 13 29.03   -00 10 12.0   24.5r 16GY390   T09  C~8HFs      
2016 04  08.51792  12 13 28.98   -00 10 11.6   24.4r 16GY390   T09  C~8HFs      
2016 04  08.52637  12 13 28.92   -00 10 11.6   24.4r 16GY390   T09  C~8HFs      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.05       0.00    -0.06
     2   0.0000     -0.81     0.06      -0.02     0.02
     3   0.0001     -3.56     0.05      -0.45    -0.11
     4   0.0002     -6.44    -0.05      -0.61     0.05
     5   0.0052   -211.04     0.05     -22.56    -0.18
     6   0.0053   -212.91     0.01     -22.39     0.20
     7   0.0054   -215.85    -0.06     -22.79     0.12
     8   0.0166   -664.69     0.04     -72.19    -0.11
     9   0.0166   -665.36    -0.09     -72.15    -0.01
    10   0.0167   -666.21    -0.02     -72.08     0.16
    11   0.0167   -667.03     0.08     -72.44    -0.09

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.