The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16GY390 # Created Wed Nov 27 02:10:38 2024 # Orbit generated from Bernstein formalism # Fitting 11 observations of 11 # Arc: 6.10d # First observation: 2016/04/02 # Last observation: 2016/04/08 Preliminary a, adot, b, bdot, g, gdot: 0.000000 0.058180 0.000000 -0.019908 0.040976 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 2.96 DOF: 17 RMS: 0.09 # Min/Max residuals: -0.18 0.20 # Exact a, adot, b, bdot, g, gdot: 1.775807E-05 4.254896E-02 -7.930184E-06 -1.999343E-02 3.845581E-02 -7.891552E-03 # Covariance matrix: 4.6443E-11 1.0813E-07 1.9543E-14 4.7806E-10 1.7610E-08 7.7350E-09 1.0813E-07 2.5350E-04 3.7867E-11 1.1287E-06 4.1266E-05 -5.3065E-06 1.9543E-14 3.7867E-11 2.6397E-13 -1.8399E-11 6.5788E-12 7.7257E-10 4.7806E-10 1.1287E-06 -1.8399E-11 7.8705E-09 1.8331E-07 -8.0914E-07 1.7610E-08 4.1266E-05 6.5788E-12 1.8331E-07 6.7183E-06 3.5958E-07 7.7350E-09 -5.3065E-06 7.7257E-10 -8.0914E-07 3.5958E-07 2.2824E-03 # lat0 lon0 xBary yBary zBary JD0 1.204271 -176.654243 -0.163862 0.020775 -0.981830 2457480.931849 # Heliocentric elements and errors Epoch: 2457480.5000 = 2016/04/02 Mean Anomaly: 297.99117 +/- 116.722 Argument of Peri: 257.80792 +/- 151.415 Long of Asc Node: 6.17211 +/- 0.948 Inclination: 25.13209 +/- 8.283 Eccentricity: 0.16814068 +/- 1.0347 Semi-Major Axis: 28.54295781 +/- 15.1124 Time of Perihelion: 2467074.4600 +/- 16373.0 Perihelion: 23.74372535 +/- 32.0986 Aphelion: 33.34219026 +/- 34.4082 Period (y) 152.4954 +/- 121.11 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -26.92837975 +/- 1.7493 Ecliptic Y -1.74068767 +/- 0.1021 Ecliptic Z 0.54634305 +/- 0.0368 Ecliptic XDOT 0.00070779 +/- 0.0034 Ecliptic YDOT -0.00300004 +/- 0.0009 Ecliptic ZDOT -0.00143491 +/- 0.0001 # Distances at JD0 (AU) Heliocenter to KBO 26.99011152 +/- 1.7453 Geocenter to KBO 26.00387588 +/- 1.7527 # Hcoef: 10.27
The following table shows the complete astrometric record for 16GY390. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GY390) followed by the observatory code and reference code for the source of the astrometry.
2016 04 02.43106 12 14 11.65 -00 13 30.0 24.1i 16GY390 T09 C~8HFs 2016 04 02.43920 12 14 11.60 -00 13 29.7 24.0i 16GY390 T09 C~8HFs 2016 04 02.46363 12 14 11.42 -00 13 29.0 23.8i 16GY390 T09 C~8HFs 2016 04 02.48823 12 14 11.24 -00 13 28.0 23.8i 16GY390 T09 C~8HFs 2016 04 04.34312 12 13 58.14 -00 12 26.9 25.4g 16GY390 T09 C~8HFs 2016 04 04.35952 12 13 58.03 -00 12 26.0 25.2g 16GY390 T09 C~8HFs 2016 04 04.38515 12 13 57.84 -00 12 25.2 25.5g 16GY390 T09 C~8HFs 2016 04 08.50449 12 13 29.07 -00 10 12.3 24.7r 16GY390 T09 C~8HFs 2016 04 08.50945 12 13 29.03 -00 10 12.0 24.5r 16GY390 T09 C~8HFs 2016 04 08.51792 12 13 28.98 -00 10 11.6 24.4r 16GY390 T09 C~8HFs 2016 04 08.52637 12 13 28.92 -00 10 11.6 24.4r 16GY390 T09 C~8HFs
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.05 0.00 -0.06 2 0.0000 -0.81 0.06 -0.02 0.02 3 0.0001 -3.56 0.05 -0.45 -0.11 4 0.0002 -6.44 -0.05 -0.61 0.05 5 0.0052 -211.04 0.05 -22.56 -0.18 6 0.0053 -212.91 0.01 -22.39 0.20 7 0.0054 -215.85 -0.06 -22.79 0.12 8 0.0166 -664.69 0.04 -72.19 -0.11 9 0.0166 -665.36 -0.09 -72.15 -0.01 10 0.0167 -666.21 -0.02 -72.08 0.16 11 0.0167 -667.03 0.08 -72.44 -0.09
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.