Orbit Fit and Astrometric record for 16GZ390

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 16GZ390   
# Created Wed Nov 27 02:10:38 2024
# Orbit generated from Bernstein formalism
# Fitting     12 observations of     12
# Arc:   6.08d
# First observation: 2016/04/02
#  Last observation: 2016/04/08
Preliminary a, adot, b, bdot, g, gdot:
   0.000000   0.043950  -0.000000   0.024577   0.031074   0.000000
# WARNING Fitting with energy constraint
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# Chi-squared of fit:     5.60 DOF:     19 RMS:  0.12
# Min/Max residuals:    -0.25    0.22
# Exact a, adot, b, bdot, g, gdot:
  8.720054E-06  1.434279E-02  1.467853E-05  2.442631E-02  2.627223E-02  5.824763E-03
# Covariance matrix:
  9.0808E-11  1.4689E-07  2.2778E-13  8.1503E-10  2.3887E-08 -7.1513E-08
  1.4689E-07  2.3821E-04  3.6979E-10  1.3208E-06  3.8732E-05 -1.1781E-04
  2.2778E-13  3.6979E-10  2.0563E-13 -1.3358E-11  6.0096E-11 -2.6216E-10
  8.1503E-10  1.3208E-06 -1.3358E-11  1.0237E-08  2.1482E-07 -5.2715E-07
  2.3887E-08  3.8732E-05  6.0096E-11  2.1482E-07  6.2978E-06 -1.9028E-05
 -7.1513E-08 -1.1781E-04 -2.6216E-10 -5.2715E-07 -1.9028E-05  3.8356E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
    1.529278 -176.733651   -0.165363    0.026337   -0.981447  2457480.939989
# Heliocentric elements and errors
Epoch:              2457480.5000  =  2016/04/02
Mean Anomaly:           33.24663 +/-    55.621
Argument of Peri:      304.19967 +/-   119.059
Long of Asc Node:      182.63396 +/-     0.916
Inclination:            59.51512 +/-    26.848
Eccentricity:         0.28283097 +/-    0.6230
Semi-Major Axis:     48.88841122 +/-   19.3990
Time of Perihelion: 2445949.8845 +/-   18028.3
Perihelion:          35.06125455 +/-   33.4844
Aphelion:            62.71556788 +/-   39.3312
Period (y)              341.8354 +/-    203.46
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -38.96214945 +/-    3.6286
Ecliptic Y           -2.39137999 +/-    0.2068
Ecliptic Z            1.01640259 +/-    0.0971
Ecliptic XDOT        -0.00045271 +/-    0.0021
Ecliptic YDOT        -0.00152993 +/-    0.0014
Ecliptic ZDOT         0.00256079 +/-    0.0003
# Distances at JD0 (AU)
Heliocenter to KBO   39.04869860 +/-    3.6206
Geocenter to KBO     38.06299971 +/-    3.6358
# Hcoef:  8.76

The following table shows the complete astrometric record for 16GZ390. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16GZ390) followed by the observatory code and reference code for the source of the astrometry.

2016 04  02.43920  12 14 25.14   +00 06 17.3   24.4i 16GZ390   T09  C~8HFs      
2016 04  02.46363  12 14 25.02   +00 06 18.5   24.3i 16GZ390   T09  C~8HFs      
2016 04  02.49633  12 14 24.86   +00 06 19.8   24.4i 16GZ390   T09  C~8HFs      
2016 04  02.49902  12 14 24.86   +00 06 20.0   24.1i 16GZ390   T09  C~8HFs      
2016 04  02.52059  12 14 24.75   +00 06 20.8   24.2i 16GZ390   T09  C~8HFs      
2016 04  04.34312  12 14 16.07   +00 07 44.2   25.0g 16GZ390   T09  C~8HFs      
2016 04  04.36588  12 14 15.95   +00 07 45.2   25.4g 16GZ390   T09  C~8HFs      
2016 04  04.38515  12 14 15.85   +00 07 45.7   25.0g 16GZ390   T09  C~8HFs      
2016 04  04.41084  12 14 15.72   +00 07 47.2   25.1g 16GZ390   T09  C~8HFs      
2016 04  08.50449  12 13 56.45   +00 10 51.3   24.7r 16GZ390   T09  C~8HFs      
2016 04  08.51156  12 13 56.41   +00 10 51.4   24.7r 16GZ390   T09  C~8HFs      
2016 04  08.51792  12 13 56.39   +00 10 51.8   24.4r 16GZ390   T09  C~8HFs      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.02       0.00     0.00
     2   0.0001     -2.13    -0.06       0.39     0.08
     3   0.0002     -4.85     0.00       0.63    -0.11
     4   0.0002     -4.93     0.15       0.81     0.04
     5   0.0002     -6.76     0.16       0.89    -0.16
     6   0.0052   -159.37     0.02      25.72     0.22
     7   0.0053   -161.42    -0.10      25.93     0.14
     8   0.0053   -163.00    -0.04      25.79    -0.25
     9   0.0054   -165.38    -0.25      26.39     0.03
    10   0.0166   -503.77     0.01      80.56     0.08
    11   0.0166   -504.36     0.00      80.42    -0.16
    12   0.0166   -504.80     0.09      80.66     0.01

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.