The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 16PP296 # Created Wed Nov 27 02:10:40 2024 # Orbit generated from Bernstein formalism # Fitting 18 observations of 18 # Arc: 36.98d # First observation: 2016/08/01 # Last observation: 2016/09/07 Preliminary a, adot, b, bdot, g, gdot: -0.000001 0.028787 -0.000001 0.000111 0.025634 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 9.98 DOF: 31 RMS: 0.13 # Min/Max residuals: -0.29 0.30 # Exact a, adot, b, bdot, g, gdot: 1.494110E-05 2.590485E-02 1.144658E-07 2.065877E-04 2.496956E-02 1.135661E-03 # Covariance matrix: 3.4818E-13 1.3876E-10 -4.9934E-14 -4.7626E-12 3.1424E-11 2.8818E-09 1.3876E-10 4.2480E-07 -1.3471E-10 -1.4612E-08 8.9450E-08 6.2045E-06 -4.9934E-14 -1.3471E-10 2.6842E-13 1.8735E-12 -2.8479E-11 -2.0222E-09 -4.7626E-12 -1.4612E-08 1.8735E-12 5.5533E-10 -3.0749E-09 -2.1230E-07 3.1424E-11 8.9450E-08 -2.8479E-11 -3.0749E-09 1.8872E-08 1.3241E-06 2.8818E-09 6.2045E-06 -2.0222E-09 -2.1230E-07 1.3241E-06 9.9402E-05 # lat0 lon0 xBary yBary zBary JD0 4.136489 -5.731545 0.712604 0.052257 -0.721010 2457601.982269 # Heliocentric elements and errors Epoch: 2457600.5000 = 2016/07/31 Mean Anomaly: 12.36632 +/- 160.077 Argument of Peri: 67.04654 +/- 203.273 Long of Asc Node: 270.68643 +/- 0.575 Inclination: 4.09724 +/- 0.006 Eccentricity: 0.11185525 +/- 0.1637 Semi-Major Axis: 45.73877406 +/- 3.5880 Time of Perihelion: 2453719.3255 +/- 50238.0 Perihelion: 40.62265215 +/- 8.1358 Aphelion: 50.85489598 +/- 8.4824 Period (y) 309.3392 +/- 36.40 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X 40.38924371 +/- 0.2187 Ecliptic Y -4.77268867 +/- 0.0220 Ecliptic Z 2.88887814 +/- 0.0159 Ecliptic XDOT 0.00040690 +/- 0.0011 Ecliptic YDOT 0.00280696 +/- 0.0001 Ecliptic ZDOT 0.00003155 +/- 0.0001 # Distances at JD0 (AU) Heliocenter to KBO 40.77272596 +/- 0.2166 Geocenter to KBO 40.04876950 +/- 0.2203 # Hcoef: 8.79
The following table shows the complete astrometric record for 16PP296. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (16PP296) followed by the observatory code and reference code for the source of the astrometry.
2016 08 01.48148 23 32 24.19 +01 31 18.8 24.8z 16PP296 T09 C~86tr 2016 08 01.51940 23 32 24.06 +01 31 18.1 24.8z 16PP296 T09 C~86tr 2016 08 01.55200 23 32 23.94 +01 31 17.6 24.1z 16PP296 T09 C~86tr 2016 08 01.57640 23 32 23.87 +01 31 17.1 24.5z 16PP296 T09 C~86tr 2016 08 09.44928 23 31 57.99 +01 29 05.9 23.8y 16PP296 T09 C~86tr 2016 08 09.46016 23 31 57.94 +01 29 05.9 24.7y 16PP296 T09 C~86tr 2016 08 09.48745 23 31 57.84 +01 29 05.2 24.4y 16PP296 T09 C~86tr 2016 08 09.50954 23 31 57.74 +01 29 04.9 23.8y 16PP296 T09 C~86tr 2016 08 28.39408 23 30 43.15 +01 22 04.7 25.9g 16PP296 T09 C~86tr 2016 08 28.40683 23 30 43.10 +01 22 04.5 25.6g 16PP296 T09 C~86tr 2016 08 28.41119 23 30 43.09 +01 22 04.5 25.6g 16PP296 T09 C~86tr 2016 08 28.41778 23 30 43.07 +01 22 04.2 25.6g 16PP296 T09 C~86tr 2016 08 28.41990 23 30 43.05 +01 22 04.2 25.6g 16PP296 T09 C~86tr 2016 09 05.37210 23 30 08.10 +01 18 32.9 24.5i 16PP296 T09 C~86tr 2016 09 05.39103 23 30 08.00 +01 18 32.2 24.4i 16PP296 T09 C~86tr 2016 09 07.41191 23 29 58.93 +01 17 36.1 25.3r 16PP296 T09 C~86tr 2016 09 07.44719 23 29 58.76 +01 17 34.9 25.1r 16PP296 T09 C~86tr 2016 09 07.45841 23 29 58.73 +01 17 34.8 25.0r 16PP296 T09 C~86tr
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.30 0.00 0.00 2 0.0001 -2.07 0.09 0.13 -0.06 3 0.0002 -3.92 -0.16 0.38 0.03 4 0.0003 -5.08 -0.13 0.34 -0.14 5 0.0218 -413.38 0.12 33.52 -0.12 6 0.0218 -414.07 0.05 33.81 0.13 7 0.0219 -415.72 -0.05 33.76 -0.04 8 0.0220 -417.22 -0.29 34.08 0.18 9 0.0737 -1610.71 -0.19 91.21 -0.01 10 0.0737 -1611.48 -0.06 91.33 0.07 11 0.0737 -1611.62 0.11 91.38 0.12 12 0.0737 -1612.01 0.18 91.23 -0.06 13 0.0738 -1612.29 0.06 91.35 0.06 14 0.0955 -2177.27 0.22 104.95 0.09 15 0.0956 -2178.92 -0.04 104.90 0.00 16 0.1011 -2326.05 -0.06 107.27 -0.00 17 0.1012 -2328.87 -0.26 107.18 -0.15 18 0.1012 -2329.32 0.12 107.27 -0.08
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.