The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 17DF168 # Created Wed Nov 27 02:10:49 2024 # Orbit generated from Bernstein formalism # Fitting 10 observations of 10 # Arc: 2.15d # First observation: 2017/02/21 # Last observation: 2017/02/23 # WARNING Fitting with energy constraint # WARNING and with gdot fixed = 0 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # Chi-squared of fit: 9.21 DOF: 16 RMS: 0.17 # Min/Max residuals: -0.31 0.30 # Exact a, adot, b, bdot, g, gdot: 1.569682E-05 2.383616E-02 -3.960113E-07 8.580880E-04 2.423845E-02 0.000000E+00 # Covariance matrix: 3.7655E-11 5.7183E-08 -2.0027E-12 -3.1425E-09 1.1144E-08 0.0000E+00 5.7183E-08 8.7559E-05 -3.0636E-09 -4.8073E-06 1.7048E-05 0.0000E+00 -2.0027E-12 -3.0636E-09 3.5279E-13 1.2523E-10 -5.9660E-10 0.0000E+00 -3.1425E-09 -4.8073E-06 1.2523E-10 2.8272E-07 -9.3617E-07 0.0000E+00 1.1144E-08 1.7048E-05 -5.9660E-10 -9.3617E-07 3.3198E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.8739E-04 # lat0 lon0 xBary yBary zBary JD0 4.341670 -170.796846 0.590462 0.060146 -0.790147 2457806.006401 # Heliocentric elements and errors Epoch: 2457800.5000 = 2017/02/16 Mean Anomaly: 339.12982 +/- 67.128 Argument of Peri: 86.16314 +/- 127.178 Long of Asc Node: 124.87230 +/- 22.261 Inclination: 4.75569 +/- 0.920 Eccentricity: 0.03981773 +/- 0.5772 Semi-Major Axis: 43.67061373 +/- 22.9681 Time of Perihelion: 2463911.4111 +/- 230425.2 Perihelion: 41.93174902 +/- 33.4916 Aphelion: 45.40947845 +/- 34.7233 Period (y) 288.5972 +/- 227.68 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -41.48861789 +/- 3.0527 Ecliptic Y -6.12828516 +/- 0.4944 Ecliptic Z 3.12328029 +/- 0.2348 Ecliptic XDOT 0.00044099 +/- 0.0015 Ecliptic YDOT -0.00266324 +/- 0.0009 Ecliptic ZDOT 0.00009658 +/- 0.0001 # Distances at JD0 (AU) Heliocenter to KBO 42.05491853 +/- 3.0125 Geocenter to KBO 41.25676283 +/- 3.1013 # Hcoef: 9.02
The following table shows the complete astrometric record for 17DF168. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (17DF168) followed by the observatory code and reference code for the source of the astrometry.
2017 02 21.50560 12 40 38.90 +00 20 41.9 24.7z 17DF168 T09 C~86uz 2017 02 21.54193 12 40 38.78 +00 20 42.5 25.0z 17DF168 T09 C~86uz 2017 02 21.56347 12 40 38.70 +00 20 43.1 24.5z 17DF168 T09 C~86uz 2017 02 21.59307 12 40 38.59 +00 20 44.2 25.1z 17DF168 T09 C~86uz 2017 02 21.59574 12 40 38.59 +00 20 43.9 25.2z 17DF168 T09 C~86uz 2017 02 23.55566 12 40 32.00 +00 21 35.8 25.3r 17DF168 T09 C~86uz 2017 02 23.57824 12 40 31.92 +00 21 36.5 25.7r 17DF168 T09 C~86uz 2017 02 23.61010 12 40 31.79 +00 21 36.8 25.3r 17DF168 T09 C~86uz 2017 02 23.62285 12 40 31.76 +00 21 37.2 25.5r 17DF168 T09 C~86uz 2017 02 23.65247 12 40 31.63 +00 21 38.3 25.2r 17DF168 T09 C~86uz
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.03 0.00 0.20 2 0.0001 -1.89 0.15 -0.15 -0.10 3 0.0002 -3.23 0.04 -0.07 -0.11 4 0.0002 -5.18 -0.22 0.29 0.14 5 0.0002 -5.06 0.05 0.01 -0.15 6 0.0056 -116.35 0.09 8.93 0.22 7 0.0057 -117.73 0.04 9.10 0.30 8 0.0058 -119.64 0.00 8.61 -0.31 9 0.0058 -120.21 0.18 8.81 -0.16 10 0.0059 -122.44 -0.31 9.05 -0.03
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.