The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 17DQ166 # Created Wed Nov 27 02:10:49 2024 # Orbit generated from Bernstein formalism # Fitting 10 observations of 10 # Arc: 30.99d # First observation: 2017/01/23 # Last observation: 2017/02/23 Preliminary a, adot, b, bdot, g, gdot: -0.000000 0.022651 -0.000001 -0.003868 0.023391 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 1.38 DOF: 15 RMS: 0.07 # Min/Max residuals: -0.18 0.13 # Exact a, adot, b, bdot, g, gdot: 1.445043E-05 2.099915E-02 -3.119617E-06 -3.726814E-03 2.282745E-02 -5.682399E-03 # Covariance matrix: 3.8831E-13 -2.7356E-11 -5.4067E-15 1.1381E-12 -1.6361E-13 3.4112E-09 -2.7356E-11 1.3269E-07 -3.4948E-11 -1.0594E-08 3.8694E-08 5.1030E-06 -5.4067E-15 -3.4948E-11 2.6182E-13 -6.0600E-13 -1.0802E-11 -1.7279E-09 1.1381E-12 -1.0594E-08 -6.0600E-13 9.6479E-10 -3.1317E-09 -4.3300E-07 -1.6361E-13 3.8694E-08 -1.0802E-11 -3.1317E-09 1.1643E-08 1.7120E-06 3.4112E-09 5.1030E-06 -1.7279E-09 -4.3300E-07 1.7120E-06 3.3804E-04 # lat0 lon0 xBary yBary zBary JD0 3.915324 -173.310952 0.881663 0.030305 -0.440307 2457777.128531 # Heliocentric elements and errors Epoch: 2457770.5000 = 2017/01/17 Mean Anomaly: 296.81690 +/- 72.556 Argument of Peri: 254.17037 +/- 6.988 Long of Asc Node: 26.47555 +/- 0.546 Inclination: 10.73900 +/- 0.265 Eccentricity: 0.28101645 +/- 0.8366 Semi-Major Axis: 46.77545679 +/- 21.8593 Time of Perihelion: 2478278.5284 +/- 18653.6 Perihelion: 33.63078386 +/- 42.1701 Aphelion: 59.92012973 +/- 48.1189 Period (y) 319.9155 +/- 224.26 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -43.95146271 +/- 0.2052 Ecliptic Y -4.27122328 +/- 0.0241 Ecliptic Z 2.99107788 +/- 0.0141 Ecliptic XDOT 0.00094119 +/- 0.0022 Ecliptic YDOT -0.00243248 +/- 0.0003 Ecliptic ZDOT -0.00049253 +/- 0.0001 # Distances at JD0 (AU) Heliocenter to KBO 44.25969916 +/- 0.2038 Geocenter to KBO 43.80690613 +/- 0.2071 # Hcoef: 7.73
The following table shows the complete astrometric record for 17DQ166. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (17DQ166) followed by the observatory code and reference code for the source of the astrometry.
2017 01 23.62773 12 30 45.40 +00 56 27.5 23.7i 17DQ166 T09 C~85Iz 2017 01 23.63308 12 30 45.39 +00 56 27.5 24.0i 17DQ166 T09 C~85Iz 2017 01 23.63574 12 30 45.38 +00 56 27.5 23.9i 17DQ166 T09 C~85Iz 2017 01 28.60612 12 30 37.20 +00 57 35.3 24.3z 17DQ166 T09 C~85Iz 2017 01 28.62568 12 30 37.16 +00 57 35.8 24.2z 17DQ166 T09 C~85Iz 2017 01 28.62837 12 30 37.16 +00 57 35.8 23.8z 17DQ166 T09 C~85Iz 2017 01 28.63916 12 30 37.14 +00 57 36.0 24.1z 17DQ166 T09 C~85Iz 2017 02 23.55008 12 29 26.03 +01 06 07.7 24.1r 17DQ166 T09 C~85Iz 2017 02 23.58469 12 29 25.90 +01 06 08.3 24.2r 17DQ166 T09 C~85Iz 2017 02 23.61866 12 29 25.78 +01 06 09.2 24.4r 17DQ166 T09 C~85Iz
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.02 0.00 0.11 2 0.0000 -0.14 0.02 -0.06 0.04 3 0.0000 -0.28 -0.05 -0.12 -0.03 4 0.0136 -139.77 0.05 13.69 -0.18 5 0.0137 -140.51 -0.07 13.91 0.00 6 0.0137 -140.51 0.02 13.91 -0.00 7 0.0137 -140.87 0.01 13.98 0.04 8 0.0847 -1322.76 -0.01 62.72 0.13 9 0.0848 -1324.79 0.01 62.50 -0.10 10 0.0848 -1326.80 0.00 62.61 -0.00
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.