The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 19AM142 # Created Wed Nov 27 02:10:53 2024 # Orbit generated from Bernstein formalism # Fitting 10 observations of 10 # Arc: 83.97d # First observation: 2019/01/11 # Last observation: 2019/04/05 Preliminary a, adot, b, bdot, g, gdot: 0.000000 0.024078 0.000000 -0.002509 0.022041 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 7.74 DOF: 15 RMS: 0.16 # Min/Max residuals: -0.35 0.29 # Exact a, adot, b, bdot, g, gdot: 1.455154E-05 1.911190E-02 -1.653080E-06 -2.622167E-03 2.107173E-02 6.527799E-03 # Covariance matrix: 7.2123E-12 9.5087E-09 2.9476E-13 2.5698E-10 1.6270E-09 -1.2150E-08 9.5087E-09 1.3451E-05 4.1690E-10 3.6362E-07 2.3000E-06 -1.7447E-05 2.9476E-13 4.1690E-10 4.9984E-13 9.1433E-12 7.1240E-11 -5.5224E-10 2.5698E-10 3.6362E-07 9.1433E-12 9.8841E-09 6.1944E-08 -5.2903E-07 1.6270E-09 2.3000E-06 7.1240E-11 6.1944E-08 3.9458E-07 -2.6584E-06 -1.2150E-08 -1.7447E-05 -5.5224E-10 -5.2903E-07 -2.6584E-06 1.0330E-04 # lat0 lon0 xBary yBary zBary JD0 -6.159701 165.730808 0.812439 -0.060753 -0.563748 2458495.042281 # Heliocentric elements and errors Epoch: 2458490.5000 = 2019/01/07 Mean Anomaly: 48.69350 +/- 35.797 Argument of Peri: 133.13005 +/- 59.645 Long of Asc Node: 307.45320 +/- 6.186 Inclination: 9.97737 +/- 1.382 Eccentricity: 0.32782370 +/- 0.5166 Semi-Major Axis: 55.46629842 +/- 20.7009 Time of Perihelion: 2438082.0187 +/- 9724.5 Perihelion: 37.28313126 +/- 31.8514 Aphelion: 73.64946559 +/- 39.7044 Period (y) 413.0969 +/- 231.26 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -46.07589288 +/- 1.3631 Ecliptic Y 12.54857119 +/- 0.3468 Ecliptic Z -5.09224693 +/- 0.1518 Ecliptic XDOT -0.00138596 +/- 0.0012 Ecliptic YDOT -0.00220966 +/- 0.0006 Ecliptic ZDOT -0.00042994 +/- 0.0002 # Distances at JD0 (AU) Heliocenter to KBO 48.02484276 +/- 1.3110 Geocenter to KBO 47.45695398 +/- 1.4147 # Hcoef: 8.61
The following table shows the complete astrometric record for 19AM142. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (19AM142) followed by the observatory code and reference code for the source of the astrometry.
2019 01 11.54148 10 57 56.05 -00 03 19.8 24.7z 19AM142 T09 C~870S 2019 01 11.58707 10 57 55.96 -00 03 19.4 25.4z 19AM142 T09 C~870S 2019 01 11.62779 10 57 55.85 -00 03 19.4 25.9z 19AM142 T09 C~870S 2019 04 04.38985 10 53 00.38 +00 22 38.3 26.1g 19AM142 T09 C~870S 2019 04 04.42780 10 53 00.24 +00 22 39.3 25.7g 19AM142 T09 C~870S 2019 04 04.42989 10 53 00.24 +00 22 39.2 26.4g 19AM142 T09 C~870S 2019 04 05.38960 10 52 57.05 +00 23 01.3 25.4r 19AM142 T09 C~870S 2019 04 05.43532 10 52 56.92 +00 23 02.9 25.3r 19AM142 T09 C~870S 2019 04 05.47937 10 52 56.78 +00 23 03.4 25.1r 19AM142 T09 C~870S 2019 04 05.51163 10 52 56.68 +00 23 04.5 24.9r 19AM142 T09 C~870S
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 -0.04 0.00 -0.06 2 0.0001 -1.40 0.10 -0.15 0.18 3 0.0002 -2.92 -0.05 -0.79 -0.11 4 0.2268 -4693.69 0.06 -272.03 0.00 5 0.2269 -4696.02 -0.14 -271.91 0.05 6 0.2269 -4695.98 0.02 -272.00 -0.05 7 0.2296 -4748.68 -0.21 -270.06 -0.35 8 0.2297 -4751.09 -0.10 -269.33 0.29 9 0.2298 -4753.22 0.20 -269.68 -0.15 10 0.2299 -4755.03 0.16 -269.24 0.21
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.