The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 19CK31 # Created Wed Nov 27 02:10:54 2024 # Orbit generated from Bernstein formalism # Fitting 12 observations of 12 # Arc: 33.78d # First observation: 2019/02/02 # Last observation: 2019/03/08 Preliminary a, adot, b, bdot, g, gdot: 0.000000 0.039446 0.000000 -0.006601 0.029334 0.000000 # WARNING Fitting with energy constraint # Chi-squared of fit: 6.46 DOF: 19 RMS: 0.13 # Min/Max residuals: -0.30 0.26 # Exact a, adot, b, bdot, g, gdot: 1.917231E-05 3.512384E-02 -3.513052E-06 -6.531387E-03 2.840683E-02 -4.770476E-03 # Covariance matrix: 4.9086E-13 4.5280E-10 2.9072E-15 -5.2841E-12 9.0829E-11 5.4767E-09 4.5280E-10 2.2586E-06 -1.7127E-12 -2.2089E-08 4.3492E-07 1.9785E-05 2.9072E-15 -1.7127E-12 3.2283E-13 -4.1398E-12 -2.0786E-13 4.8324E-11 -5.2841E-12 -2.2089E-08 -4.1398E-12 3.0919E-10 -4.2843E-09 -2.0938E-07 9.0829E-11 4.3492E-07 -2.0786E-13 -4.2843E-09 8.3861E-08 3.8654E-06 5.4767E-09 1.9785E-05 4.8324E-11 -2.0938E-07 3.8654E-06 2.0202E-04 # lat0 lon0 xBary yBary zBary JD0 0.622950 174.545819 0.657900 0.008128 -0.741986 2458517.151403 # Heliocentric elements and errors Epoch: 2458510.5000 = 2019/01/27 Mean Anomaly: 351.65061 +/- 18.380 Argument of Peri: 203.64739 +/- 64.394 Long of Asc Node: 356.78017 +/- 0.146 Inclination: 10.56876 +/- 0.494 Eccentricity: 0.48666638 +/- 0.1792 Semi-Major Axis: 67.53644973 +/- 12.1926 Time of Perihelion: 2463212.2316 +/- 10271.5 Perihelion: 34.66873040 +/- 13.6274 Aphelion: 100.40416905 +/- 21.7967 Period (y) 555.0288 +/- 150.30 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -35.71653680 +/- 0.3572 Ecliptic Y 4.06310909 +/- 0.0341 Ecliptic Z 0.38260251 +/- 0.0039 Ecliptic XDOT 0.00013712 +/- 0.0014 Ecliptic YDOT -0.00341464 +/- 0.0001 Ecliptic ZDOT -0.00063466 +/- 0.0000 # Distances at JD0 (AU) Heliocenter to KBO 35.94893936 +/- 0.3549 Geocenter to KBO 35.20280082 +/- 0.3589 # Hcoef: 8.11
The following table shows the complete astrometric record for 19CK31. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (19CK31) followed by the observatory code and reference code for the source of the astrometry.
2019 02 02.650602 11 40 57.75 +02 44 19.4 19CK31 T09 C~89Vd 2019 02 04.58246 11 40 50.78 +02 44 58.3 24.6g 19CK31 T09 C~89Vd 2019 02 04.62685 11 40 50.61 +02 44 59.3 24.4g 19CK31 T09 C~89Vd 2019 02 04.65831 11 40 50.49 +02 44 59.8 24.7g 19CK31 T09 C~89Vd 2019 02 05.452533 11 40 47.57 +02 45 16.3 19CK31 T09 C~89Vd 2019 03 02.42414 11 38 56.48 +02 55 46.8 23.0y 19CK31 T09 C~89Vd 2019 03 02.42751 11 38 56.44 +02 55 47.3 22.9y 19CK31 T09 C~89Vd 2019 03 02.51346 11 38 56.02 +02 55 49.2 23.5y 19CK31 T09 C~89Vd 2019 03 02.55386 11 38 55.82 +02 55 50.5 23.0y 19CK31 T09 C~89Vd 2019 03 02.61089 11 38 55.52 +02 55 52.3 23.1y 19CK31 T09 C~89Vd 2019 03 08.356024 11 38 26.59 +02 58 37.0 19CK31 T09 C~89Vd 2019 03 08.429743 11 38 26.20 +02 58 39.2 19CK31 T09 C~89Vd
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.08 0.00 -0.03 2 0.0053 -111.29 -0.02 -5.69 -0.01 3 0.0054 -114.03 -0.09 -5.78 0.06 4 0.0055 -115.88 -0.06 -6.03 -0.08 5 0.0077 -162.58 0.08 -8.22 -0.01 6 0.0760 -1940.55 0.18 -88.75 0.03 7 0.0760 -1941.29 -0.30 -88.53 0.26 8 0.0763 -1947.82 0.13 -89.27 -0.13 9 0.0764 -1951.09 0.13 -89.27 0.04 10 0.0766 -1955.93 -0.10 -89.39 0.13 11 0.0923 -2419.15 0.05 -109.76 -0.14 12 0.0925 -2425.39 -0.08 -110.06 -0.13
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.