Orbit Fit and Astrometric record for 19GL196

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 19GL196   
# Created Wed Nov 27 02:10:57 2024
# Orbit generated from Bernstein formalism
# Fitting     13 observations of     13
# Arc: 113.82d
# First observation: 2018/12/12
#  Last observation: 2019/04/05
Preliminary a, adot, b, bdot, g, gdot:
  -0.000001   0.033067   0.000001  -0.009491   0.026869   0.000000
# WARNING Fitting with energy constraint
# Chi-squared of fit:     5.00 DOF:     21 RMS:  0.11
# Min/Max residuals:    -0.22    0.18
# Exact a, adot, b, bdot, g, gdot:
  1.394985E-05  2.311140E-02 -5.500110E-06 -9.471409E-03  2.512297E-02  1.251777E-02
# Covariance matrix:
  3.8856E-13  2.3805E-10  6.0880E-15  5.4300E-12  2.8691E-11 -2.4580E-09
  2.3805E-10  3.9455E-07  1.0158E-11  9.1966E-09  4.6890E-08 -4.1396E-06
  6.0880E-15  1.0158E-11  2.4419E-13 -4.6215E-13  1.0064E-12 -1.3793E-10
  5.4300E-12  9.1966E-09 -4.6215E-13  4.2081E-10  6.4226E-10 -1.6686E-07
  2.8691E-11  4.6890E-08  1.0064E-12  6.4226E-10  6.5799E-09 -3.3470E-07
 -2.4580E-09 -4.1396E-06 -1.3793E-10 -1.6686E-07 -3.3470E-07  6.7987E-05
#      lat0       lon0       xBary       yBary       zBary        JD0
  -13.218036  135.164804    0.811483   -0.130274   -0.555109  2458465.003171
# Heliocentric elements and errors
Epoch:              2458460.5000  =  2018/12/08
Mean Anomaly:           34.17361 +/-    22.491
Argument of Peri:      124.44803 +/-     5.562
Long of Asc Node:      285.41266 +/-     0.599
Inclination:            25.82169 +/-     0.430
Eccentricity:         0.48890140 +/-    0.3319
Semi-Major Axis:     54.51849659 +/-   22.3493
Time of Perihelion: 2444503.1613 +/-    3274.2
Perihelion:          27.86432746 +/-   21.3964
Aphelion:            81.17266572 +/-   37.8763
Period (y)              402.5539 +/-    247.53
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -27.31080087 +/-    0.0887
Ecliptic Y           28.29089212 +/-    0.0882
Ecliptic Z           -9.10178287 +/-    0.0294
Ecliptic XDOT        -0.00254243 +/-    0.0006
Ecliptic YDOT        -0.00101825 +/-    0.0007
Ecliptic ZDOT        -0.00131695 +/-    0.0002
# Distances at JD0 (AU)
Heliocenter to KBO   40.36207220 +/-    0.0864
Geocenter to KBO     39.80420894 +/-    0.1285
# Hcoef:  8.14

The following table shows the complete astrometric record for 19GL196. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (19GL196) followed by the observatory code and reference code for the source of the astrometry.

2018 12  12.50237  08 55 04.23   +03 37 33.2   23.9i 19GL196   T09  C~8Mho      
2018 12  12.51094  08 55 04.19   +03 37 33.2   24.2i 19GL196   T09  C~8Mho      
2018 12  12.51372  08 55 04.19   +03 37 33.4   23.9i 19GL196   T09  C~8Mho      
2018 12  12.51685  08 55 04.18   +03 37 33.2   23.9i 19GL196   T09  C~8Mho      
2018 12  12.53551  08 55 04.13   +03 37 32.9   24.0i 19GL196   T09  C~8Mho      
2018 12  12.53846  08 55 04.11   +03 37 33.0   23.8i 19GL196   T09  C~8Mho      
2019 04  03.34384  08 47 20.14   +04 01 50.2   23.8i 19GL196   T09  C~8Mho      
2019 04  03.38864  08 47 20.04   +04 01 51.1   24.2i 19GL196   T09  C~8Mho      
2019 04  03.40733  08 47 20.00   +04 01 51.4   23.7i 19GL196   T09  C~8Mho      
2019 04  05.26011  08 47 16.71   +04 02 29.0   24.4r 19GL196   T09  C~8Mho      
2019 04  05.30566  08 47 16.62   +04 02 30.2   24.2r 19GL196   T09  C~8Mho      
2019 04  05.30775  08 47 16.62   +04 02 29.9   24.8r 19GL196   T09  C~8Mho      
2019 04  05.32668  08 47 16.58   +04 02 30.7   24.4r 19GL196   T09  C~8Mho      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00     0.12       0.00    -0.10
     2   0.0000     -0.57    -0.10      -0.17    -0.07
     3   0.0000     -0.63    -0.05       0.02     0.18
     4   0.0000     -0.72    -0.01      -0.21     0.02
     5   0.0001     -1.35     0.12      -0.71    -0.06
     6   0.0001     -1.67    -0.08      -0.70     0.02
     7   0.3062  -7077.81     0.10    -557.99     0.12
     8   0.3063  -7079.50    -0.08    -557.55     0.05
     9   0.3064  -7080.16    -0.11    -557.43    -0.04
    10   0.3115  -7138.03     0.15    -535.13    -0.15
    11   0.3116  -7139.66    -0.05    -534.36     0.09
    12   0.3116  -7139.57     0.10    -534.65    -0.22
    13   0.3116  -7140.37    -0.11    -534.05     0.15

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.