Orbit Fit and Astrometric record for 19GS185

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 19GS185   
# Created Wed Nov 27 02:10:56 2024
# Orbit generated from Bernstein formalism
# Fitting     12 observations of     12
# Arc:  33.00d
# First observation: 2019/03/03
#  Last observation: 2019/04/05
Preliminary a, adot, b, bdot, g, gdot:
  -0.000000   0.025713   0.000001   0.008823   0.026175   0.000000
# WARNING MRQMIN stopped after  13 iterations -- oscilliatory solution
# WARNING Fitting with energy constraint
# Chi-squared of fit:     2.94 DOF:     19 RMS:  0.09
# Min/Max residuals:    -0.19    0.17
# Exact a, adot, b, bdot, g, gdot:
  1.422083E-05  2.321857E-02  6.103462E-06  8.836191E-03  2.575502E-02  8.730735E-03
# Covariance matrix:
  4.0583E-11  6.6054E-08 -5.8563E-13 -6.0710E-10  1.0523E-08 -6.7955E-08
  6.6054E-08  1.0883E-04 -9.6503E-10 -1.0008E-06  1.7334E-05 -1.1270E-04
 -5.8563E-13 -9.6503E-10  4.9233E-13  3.4432E-12 -1.5358E-10  1.0647E-09
 -6.0710E-10 -1.0008E-06  3.4432E-12  9.4161E-09 -1.5908E-07  1.1999E-06
  1.0523E-08  1.7334E-05 -1.5358E-10 -1.5908E-07  2.7618E-06 -1.7552E-05
 -6.7955E-08 -1.1270E-04  1.0647E-09  1.1999E-06 -1.7552E-05  3.2183E-04
#      lat0       lon0       xBary       yBary       zBary        JD0
    4.396584 -176.140165    0.369805    0.070832   -0.920828  2458546.074881
# Heliocentric elements and errors
Epoch:              2458540.5000  =  2019/02/26
Mean Anomaly:           62.43166 +/-    59.952
Argument of Peri:      271.99098 +/-    91.022
Long of Asc Node:      172.20570 +/-     4.960
Inclination:            21.25576 +/-     8.491
Eccentricity:         0.32389777 +/-    0.6919
Semi-Major Axis:     41.92753342 +/-   18.4372
Time of Perihelion: 2441343.6149 +/-   12001.7
Perihelion:          28.34729879 +/-   31.5735
Aphelion:            55.50776804 +/-   37.9117
Period (y)              271.4921 +/-    179.08
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -39.57036224 +/-    2.4923
Ecliptic Y           -2.30729487 +/-    0.1679
Ecliptic Z            2.97673899 +/-    0.1921
Ecliptic XDOT        -0.00067712 +/-    0.0020
Ecliptic YDOT        -0.00252145 +/-    0.0009
Ecliptic ZDOT         0.00100749 +/-    0.0002
# Distances at JD0 (AU)
Heliocenter to KBO   39.74919059 +/-    2.4812
Geocenter to KBO     38.82738952 +/-    2.5054
# Hcoef:  7.96

The following table shows the complete astrometric record for 19GS185. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (19GS185) followed by the observatory code and reference code for the source of the astrometry.

2019 03  03.57408  12 21 09.10   +02 30 03.4   23.9z 19GS185   T09  C~85KF      
2019 03  03.62777  12 21 08.87   +02 30 05.5   23.6z 19GS185   T09  C~85KF      
2019 03  03.64387  12 21 08.81   +02 30 06.1   23.6z 19GS185   T09  C~85KF      
2019 04  04.45230  12 18 43.64   +02 49 07.0   23.9g 19GS185   T09  C~85KF      
2019 04  04.46143  12 18 43.59   +02 49 07.3   24.3g 19GS185   T09  C~85KF      
2019 04  04.46353  12 18 43.58   +02 49 07.5   24.6g 19GS185   T09  C~85KF      
2019 04  04.49722  12 18 43.42   +02 49 08.7   24.5g 19GS185   T09  C~85KF      
2019 04  04.51607  12 18 43.32   +02 49 09.3   24.5g 19GS185   T09  C~85KF      
2019 04  05.52450  12 18 38.70   +02 49 43.3   23.6r 19GS185   T09  C~85KF      
2019 04  05.52660  12 18 38.68   +02 49 43.6   23.8r 19GS185   T09  C~85KF      
2019 04  05.56011  12 18 38.53   +02 49 44.6   24.0r 19GS185   T09  C~85KF      
2019 04  05.57896  12 18 38.43   +02 49 45.3   23.9r 19GS185   T09  C~85KF      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00     0.01       0.00    -0.14
     2   0.0001     -4.00    -0.06       0.56     0.03
     3   0.0002     -5.06     0.05       0.75     0.11
     4   0.0873  -2454.56     0.15     184.26    -0.02
     5   0.0873  -2455.37     0.05     184.24    -0.07
     6   0.0873  -2455.58     0.00     184.36     0.05
     7   0.0874  -2458.26    -0.05     184.51     0.09
     8   0.0875  -2459.87    -0.19     184.47    -0.02
     9   0.0902  -2536.91     0.17     188.21    -0.07
    10   0.0902  -2537.30    -0.06     188.37     0.08
    11   0.0903  -2539.76     0.07     188.40    -0.01
    12   0.0904  -2541.42    -0.13     188.44    -0.02

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.