The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.
# Object: 19GS188 # Created Wed Nov 27 02:10:57 2024 # Orbit generated from Bernstein formalism # Fitting 9 observations of 9 # Arc: 21.12d # First observation: 2019/03/15 # Last observation: 2019/04/05 Preliminary a, adot, b, bdot, g, gdot: -0.000000 0.033612 0.000000 0.005764 0.026533 0.000000 # WARNING MRQMIN stopped after 13 iterations -- oscilliatory solution # WARNING Fitting with energy constraint # Chi-squared of fit: 1.09 DOF: 13 RMS: 0.06 # Min/Max residuals: -0.10 0.13 # Exact a, adot, b, bdot, g, gdot: 1.641755E-05 2.651239E-02 4.018161E-06 6.110810E-03 2.539066E-02 5.702954E-04 # Covariance matrix: 7.7513E-12 1.1513E-08 -2.9322E-13 -5.3248E-10 1.9378E-09 -2.1913E-08 1.1513E-08 1.8257E-05 -4.6474E-10 -8.4401E-07 3.0697E-06 -3.5396E-05 -2.9322E-13 -4.6474E-10 4.9140E-13 1.3015E-11 -7.8046E-11 9.8236E-10 -5.3248E-10 -8.4401E-07 1.3015E-11 3.9326E-08 -1.4169E-07 1.8273E-06 1.9378E-09 3.0697E-06 -7.8046E-11 -1.4169E-07 5.1678E-07 -5.4065E-06 -2.1913E-08 -3.5396E-05 9.8236E-10 1.8273E-06 -5.4065E-06 5.3258E-04 # lat0 lon0 xBary yBary zBary JD0 -7.154099 163.436008 -0.179605 -0.122039 -0.972586 2458557.890341 # Heliocentric elements and errors Epoch: 2458550.5000 = 2019/03/08 Mean Anomaly: 6.24064 +/- 226.397 Argument of Peri: 322.38502 +/- 326.232 Long of Asc Node: 191.48449 +/- 4.495 Inclination: 14.71985 +/- 2.103 Eccentricity: 0.17455894 +/- 0.2413 Semi-Major Axis: 48.79800734 +/- 13.1372 Time of Perihelion: 2456392.1196 +/- 78296.5 Perihelion: 40.27987908 +/- 16.0077 Aphelion: 57.31613560 +/- 19.4101 Period (y) 340.8877 +/- 137.66 # Ecliptic coordinates at JD0 (AU and AU/d) Ecliptic X -38.44588080 +/- 1.0605 Ecliptic Y 11.23970731 +/- 0.3155 Ecliptic Z -4.90472692 +/- 0.1389 Ecliptic XDOT -0.00094392 +/- 0.0023 Ecliptic YDOT -0.00270064 +/- 0.0009 Ecliptic ZDOT 0.00064592 +/- 0.0003 # Distances at JD0 (AU) Heliocenter to KBO 40.35434446 +/- 1.0143 Geocenter to KBO 39.38456219 +/- 1.1151 # Hcoef: 8.17
The following table shows the complete astrometric record for 19GS188. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (19GS188) followed by the observatory code and reference code for the source of the astrometry.
2019 03 15.38954 10 47 59.32 -00 05 59.7 23.6y 19GS188 T09 C~8HRM 2019 03 15.41944 10 47 59.19 -00 05 58.6 23.1y 19GS188 T09 C~8HRM 2019 03 15.43030 10 47 59.13 -00 05 58.3 24.3y 19GS188 T09 C~8HRM 2019 04 04.38566 10 46 37.43 +00 05 02.7 25.2g 19GS188 T09 C~8HRM 2019 04 04.42571 10 46 37.28 +00 05 04.1 25.2g 19GS188 T09 C~8HRM 2019 04 05.38680 10 46 33.81 +00 05 35.1 24.1r 19GS188 T09 C~8HRM 2019 04 05.43322 10 46 33.64 +00 05 36.5 24.1r 19GS188 T09 C~8HRM 2019 04 05.46471 10 46 33.52 +00 05 37.5 24.2r 19GS188 T09 C~8HRM 2019 04 05.50953 10 46 33.36 +00 05 38.8 24.0r 19GS188 T09 C~8HRM
The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.
1 0.0000 0.00 0.02 0.00 -0.04 2 0.0001 -2.22 0.05 0.27 0.08 3 0.0001 -3.17 -0.07 0.21 -0.04 4 0.0547 -1388.14 0.02 144.03 -0.10 5 0.0549 -1390.75 -0.04 144.47 0.00 6 0.0575 -1450.69 -0.02 153.28 0.13 7 0.0576 -1453.59 0.02 153.60 0.05 8 0.0577 -1455.63 -0.04 153.84 0.01 9 0.0578 -1458.35 0.05 154.13 -0.10
The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.