Orbit Fit and Astrometric record for 19GX185

The following information shows the result of the orbit fit based on Gary Bernstein's method. Most of the information should be self-explanatory. Take special note that while the original Bernstein software works with barycentric coordinates, we convert these results into a heliocentric coordinate system.

# Object: 19GX185   
# Created Wed Nov 27 02:10:56 2024
# Orbit generated from Bernstein formalism
# Fitting     15 observations of     15
# Arc:  35.87d
# First observation: 2019/03/03
#  Last observation: 2019/04/08
Preliminary a, adot, b, bdot, g, gdot:
  -0.000000   0.067521  -0.000000  -0.010805   0.052792   0.000000
# Chi-squared of fit:     6.08 DOF:     24 RMS:  0.11
# Min/Max residuals:    -0.25    0.21
# Exact a, adot, b, bdot, g, gdot:
  2.031689E-05  6.673832E-02 -3.443812E-06 -1.073682E-02  5.241320E-02 -2.848135E-02
# Covariance matrix:
  1.9208E-12  4.8341E-09 -8.9792E-14 -4.2410E-11  7.7864E-10 -5.9734E-10
  4.8341E-09  1.6358E-05 -3.0376E-10 -1.4252E-07  2.6285E-06 -2.9092E-06
 -8.9792E-14 -3.0376E-10  4.9024E-13 -2.6751E-12 -4.8793E-11  5.8355E-11
 -4.2410E-11 -1.4252E-07 -2.6751E-12  1.3281E-09 -2.2956E-08  1.0928E-08
  7.7864E-10  2.6285E-06 -4.8793E-11 -2.2956E-08  4.2259E-07 -4.0832E-07
 -5.9734E-10 -2.9092E-06  5.8355E-11  1.0928E-08 -4.0832E-07  1.5922E-05
#      lat0       lon0       xBary       yBary       zBary        JD0
    4.531115 -175.255855    0.384669    0.072516   -0.914588  2458546.034471
# Heliocentric elements and errors
Epoch:              2458540.5000  =  2019/02/26
Mean Anomaly:          292.46998 +/-    19.530
Argument of Peri:      269.38208 +/-    11.348
Long of Asc Node:       28.59849 +/-     1.241
Inclination:            10.16397 +/-     0.474
Eccentricity:         0.40642925 +/-    0.0460
Semi-Major Axis:     19.89054392 +/-    1.4399
Time of Perihelion: 2464618.5290 +/-    1629.2
Perihelion:          11.80644514 +/-    1.2520
Aphelion:            27.97464271 +/-    2.2222
Period (y)               88.7111 +/-      9.63
# Ecliptic coordinates at JD0 (AU and AU/d)
Ecliptic X          -19.89922262 +/-    0.2351
Ecliptic Y           -1.27348514 +/-    0.0195
Ecliptic Z            1.50720512 +/-    0.0187
Ecliptic XDOT         0.00173035 +/-    0.0002
Ecliptic YDOT        -0.00335659 +/-    0.0002
Ecliptic ZDOT        -0.00067684 +/-    0.0000
# Distances at JD0 (AU)
Heliocenter to KBO   19.99681206 +/-    0.2339
Geocenter to KBO     19.07916210 +/-    0.2366
# Hcoef: 11.45

The following table shows the complete astrometric record for 19GX185. The first three columns show the date of observation. The next six columns are RA and DEC. The next column (when provided) is the observed magnitude and filter. The next column is the object name (19GX185) followed by the observatory code and reference code for the source of the astrometry.

2019 03  03.53367  12 24 36.30   +02 16 27.9   24.3z 19GX185   T09  C~870k      
2019 03  03.57408  12 24 35.96   +02 16 29.9   24.4z 19GX185   T09  C~870k      
2019 03  03.62777  12 24 35.51   +02 16 32.9   23.8z 19GX185   T09  C~870k      
2019 04  04.44382  12 19 47.13   +02 45 11.5   25.3g 19GX185   T09  C~870k      
2019 04  04.45230  12 19 47.06   +02 45 12.0   24.9g 19GX185   T09  C~870k      
2019 04  04.49722  12 19 46.63   +02 45 14.5   25.9g 19GX185   T09  C~870k      
2019 04  04.51607  12 19 46.45   +02 45 15.6   25.1g 19GX185   T09  C~870k      
2019 04  05.52660  12 19 37.15   +02 46 06.3   24.0r 19GX185   T09  C~870k      
2019 04  05.56011  12 19 36.82   +02 46 07.7   24.1r 19GX185   T09  C~870k      
2019 04  05.57896  12 19 36.66   +02 46 08.9   24.0r 19GX185   T09  C~870k      
2019 04  06.29566  12 19 30.13   +02 46 44.3   24.1i 19GX185   T09  C~870k      
2019 04  06.31170  12 19 29.99   +02 46 45.4   23.9i 19GX185   T09  C~870k      
2019 04  06.33848  12 19 29.74   +02 46 46.7   24.3i 19GX185   T09  C~870k      
2019 04  08.38570  12 19 11.06   +02 48 27.2   23.3y 19GX185   T09  C~8HRL      
2019 04  08.40204  12 19 10.92   +02 48 27.9   24.2y 19GX185   T09  C~8HRL      

The following table shows the residuals to the orbit fit. The first coumn is the point number. The second column is the time, in years, measured from the first observation. The third and fifth columns are the regularized positions used in the orbit fit. The fourth and sixth columns are the residuals, in arc seconds, for RA and Dec respectively.

     1   0.0000      0.00    -0.04       0.00     0.04
     2   0.0001     -5.47     0.03      -0.19    -0.09
     3   0.0003    -12.85     0.00      -0.11     0.05
     4   0.0874  -4662.41     0.08    -134.95    -0.19
     5   0.0874  -4663.57     0.19    -134.90    -0.07
     6   0.0875  -4670.48    -0.02    -135.16     0.10
     7   0.0876  -4673.39    -0.12    -135.22     0.21
     8   0.0903  -4821.50    -0.04    -143.82     0.11
     9   0.0904  -4826.59    -0.18    -144.49    -0.25
    10   0.0905  -4829.27    -0.07    -144.34     0.08
    11   0.0924  -4933.19     0.05    -150.56    -0.22
    12   0.0925  -4935.55     0.05    -150.38     0.11
    13   0.0926  -4939.51     0.06    -150.67     0.08
    14   0.0982  -5236.48    -0.09    -169.15     0.03
    15   0.0982  -5238.68     0.10    -169.34     0.01

The following table comes from a 10My integration of the orbit of the object. Three columns are shown. The first column is the result of integrating the nominal orbit. The other two columns are based on clones of the nominal orbit that are +/- 3 sigma from the nominal orbit. If all three types agree then the classificiation is deemed secure. The basis for these calculations is described in more detail in AJ, 129, 1117 (2005). Any use made of these calculations should refer to and credit this publication and the Deep Ecliptic Survey Team.