---------------------------------- + + deriving equations 32-34. + ---------------------------------- 1. I am able to rederive eqn (32) if I make the following assumptions: a. The upward monochomatic intensity at the lower bountry, I_nu(mu, z0), is given by I_nu(mu,z0) = B_nu(z0). b. The downward intensity is ignored (hence the term, "cool to space"). c. The left-hand side of eqn 33 is B(z0), not B. Start off with the monochromatic equation for the source function, assuming no cascading. S_nu = B_nu * (J/B + e)/(1+e) (RVY-7) Multiply both sides by (k_nu/k0) and integrate over frequency, and use eqs (RVY-6) and (RVY-7) to get S = B * (J/B + e)/(1+e) = (J + e B)/(1+e) (1) Now we turn to equation 32. The second term of eqn 1, e B/(1+e), is the first term of eqn (RVY-32). Now we just need an expression for J. Formal integration of the plane-parallel RT equation (RVY-31) gives the monochromatic intensity as a function of mu, the cosine of the zenith angle. for 0 < mu < 1 I_nu(tau, mu) = I(tau0) exp(-(tau0-tau)/mu) / tau0 + | S_nu(tau', mu) exp(-(tau'-tau)/mu) dtau'/mu / tau for -1 < mu < 0 / 0 I_nu(tau, mu) = | S_nu(tau', mu) exp(-(tau'-tau)/mu) dtau'/mu / tau Make the following substitutions: S_mu(tau', mu) is independent of mu. I(tau0) = B(z0). The lower boundary is a blackbody. dtau' = - k_nu(z') dz' tau(z,z') = | tau' - tau | and get for 0 < mu < 1 I_nu(tau, mu) = B(z0) exp(-tau(z0,z)/mu) / z + | S_nu(z') exp(-tau(z,z')/mu) k_nu dz'/mu / z0 for -1 < mu < 0 / inf I_nu(tau, mu) = - | S_nu(z') exp(+tau(z',z)/mu) dtau'/mu / z So, we see that 1 / 0 1 / +1 J_nu(z) = - | I_nu(z, mu) dmu + - | I_nu(z, mu) dmu 2 / -1 2 / 0 has 3 terms. Let's call them J1_nu, J2_nu, and J3_nu. / +1 J1_nu(z) = (1/2) | B(z0) exp(-tau(z0,z)/mu) dmu / 0 / +1 / z J2_nu(z) = (1/2) | dmu | S_nu(z') exp(-tau(z,z')/mu) k_nu dz'/mu / 0 / z0 / 0 / inf J3_nu(z) = -(1/2) | dmu | S_nu(z') exp(+tau(z',z)/mu) k_nu dz'/mu / -1 / z Take each one in turn, remembering the definitions for the exponential integrals from Abramowitz and Stegun (5.1.4) / inf En(tau) = | u^-n exp(-tau u) du / 1 Using the substitution 1/mu -> u, we derive / 1 E1(tau) = | (1/mu) exp(-tau/mu) dmu / 0 / 1 E2(tau) = | exp(-tau/mu) dmu / 0 Now we evaluate J1_nu, pulling B(z0) out of the integral. J1_nu(z) = (1/2) B(z0) E2( tau(z0,z) ) This is just eqn (RVY-33), which must also be B0 in eqn (RVY-32). Next we evaluate J2_nu, rearranging the order of the integral / z / +1 J2_nu(z) = (1/2) | dz 'S_nu(z') k_nu | dmu exp(-tau(z,z')/mu)/mu / z0 / 0 and we evaluate the inner integral / z J2_nu(z) = (1/2) | dz' S_nu(z') k_nu E1( tau(z,z') ) / z0 To evaluate J3_nu, we also switch the order of the integrals, and also make the substitution mu -> -mu / inf / 1 J3_nu(z) = (1/2) | dz' S_nu(z') k_nu | dmu exp(-tau(z',z)/mu)/mu / z / 0 giving, again, / inf J3_nu(z) = (1/2) | dz' S_nu(z') k_nu E1( tau(z,z') ) / z J2_nu and J3_nu can be combined, bearing in mind that tau(z,z1) will be calculated differently for z > z' and z < z'. Let's call it J4_nu / inf J4_nu(z) = (1/2) | dz' S_nu(z') k_nu E1( tau(z,z') ) / z0 To turn the monochromatic mean intensity into the mean intensity of the band, we multiply by k_nu(z), integrate over frequency, and divide by k0(z).