subroutine tmatrix(xu, dt, ntau, ta, tb, tc) c ------------------------------------------------ c TMATRIX calculates the tridaigonal transfer c matrix for the Feautier form of the R-T eq. c Second order boundary conditions from c Auer(1967) Ap J,vol 150,p l53 c ------------------------------------------------ implicit double precision (o-z, a-h) parameter (zero = 0.d0, half = 0.5d0, one = 1.d0, two = 2.d0) dimension dt(1), ta(1), tb(1), tc(1) c ------------------------------------- c Upper Boundary c ------------------------------------- u2 = xu * xu k = 1 tb(k) = one + two * xu / dt(1) + two * u2 / dt(1) / dt(1) tc(k) = - two * u2 / dt(1) / dt(1) c ------------------------------------- c Middle c ------------------------------------- do k = 2, ntau - 1 dta = half * (dt(k-1) + dt(k)) tfm = u2 / dta / dt(k-1) tfp = u2 / dta / dt(k) ta(k) = - tfm tb(k) = one + tfm + tfp tc(k) = - tfp end do c ------------------------------------- c Lower Boundary c ------------------------------------- k = ntau dtm = dtp ta(k) = - two * u2 / dt(k-1) / dt(k-1) tb(k) = one + two * xu / dt(k-1) + two * u2/ dt(k-1) / dt(k-1) return end