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From diffraction theory, we calculate light curves for stellar occultations by a planetary body with an isothermal
atmosphere. The character of the resulting curves is determined by the scale height H, the Fresnel zone size
1, the surface atmospheric refractivity, and the planetary radius. We present an exact general solution and two
approximations which are valid when H >>1. Finally, we assess the importance of accounting for diffraction
effects of the limb when deducing atmospheric parameters from occultation light curves.

INTRODUCTION

BSERVATIONS of stellar and spacecraft occulta-
tions have been used to study the atmospheres of
many solar system objects. For dense atmospheres,
geometric optics has been used extensively (Baum and
Code 1953; de Vaucouleurs and Menzel 1960; Brink-
mann 1971; Hubbard et al. 1972; Veverka et al. 1974),
while diffraction theory has been applied only in the
case of a very thin atmosphere (Fjeldbo and Eschleman
1965) and the case of a perfectly conducting planetary
surface (Adrianov 1969). In this paper we calculate
occultation light curves from diffraction theory for an
isothermal atmosphere of arbitrary surface density. In
the next section we state the equations and assumptions
used. We outline the exact solution and present ap-
proximations which are valid when the atmospheric
scale height greatly exceeds the Fresnel zone scale.
Sample results are given. In the final section we assess
the validity of our assumptions. We conclude by con-
sidering the conditions under which limb diffraction
must be taken into account when interpreting occulta-
tion light curves.

I. EQUATIONS AND ASSUMPTIONS

The occultation geometry is shown in Fig. 1. We
model the planetary limb as a straightedge and the
atmosphere as a phase screen. The theoretical occulta-
tion light curve is the diffraction pattern produced by
this geometry. We assume a radially symmetric atmo-
sphere with constant scale height much less than the
planetary radius. The effects of surface roughness and
conductivity are ignored. Finally, we assume a mono-
chromatic point source at infinity. We discuss in Sec. 1T
the extension of our results to more realistic conditions.
Symbols are defined as follows:

A=wavelength of observation,
D= distance to occulting body,

! [= (\D/2)¥]}=TFresnel zone scale,
H=scale height,

R=radius of occulting body,
¢o=rphase excess of grazing ray in radians,
vo=refractivity of the atmosphere at the surface,
b [=¢o?/mH*]=differential bending parameter,

y=distance along light curve from shadow boundary
in units of /,
yo=1location along light curve of line passing through
occulted object and planetary limb.

Letting the preoccultation intensity be unity, we can
express the intensity I at any point y along the light
curve as (Sommerfeld 1964)

I=KK*/2,

0
K=/ e W,
Yo

B(aw) = ’-;(w—y>2+<1><w>,

where

)]

where ®(w) is the phase shift caused by the atmosphere.
In general, vo will depend upon \, but we will ignore the
effects of dispersion in this analysis. For an isothermal
atmosphere, we find

®(w) = ¢o exp[ —I(w—1y0)/H], (2)
where (RED}
¢o= (21!')% Vo.

F16. 1. Occultation geometry. A plane wave incident from an
occulted object to the left intercepts a knife-edge and a phase
screen, which model the surface of the planet and its atmosphere.
The line at right represents the path of the Earth. The origin on
the y axis is chosen so that the stationary phase point correspond-
ing to y = 0 is at the knife-edge. This defines the position of the
geometric shadow boundary. y is measured in units of /, the Fresnel
zone scale.
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y<0 y=0 y>0
¢ -~ Fic. 2. The complex w plane. The
\ ~ mte al is evaluated from w=(y,,0) to
=Bsp\ 8o . %r «,0). Stationary phase paths are
- B S~ Yo Tsp sy shown solid and integration paths are
! Yo© Msp shown dashed for the cases y<0, y=0, and

K is most easily evaluated by integrating along lines
of stationary phase (i.e., constant 6) in the complex
» plane. In this way, the rapidly oscillating integrand
becomes a rapidly decaying exponential function. The
geometry shown in Fig. 1 has the origin on the y axis
chosen so that the stationary phase point corresponding
to y=01is at the knife-edge. This condition is met when
d0/dw=0, whence

m(w—y)= (¢ol/H) exp[ —1(w—yo)/H]. 3)

Evaluated at the knife-edge, where y=0 and w=1y,,
this gives yo=¢ol/mH.
Letting w= 4, we find

Re (6)= ’Er[(n—y)?—m

+(ryoH /1) exp[ —I(n—y0)/H] cos(¢1/H), (4)
Im (6)=wur{(n—y)¢
— (yoH /1) exp[ —I(n—y0)/H] sin(¢l/H)}.

Figure 2 illustrates schematically the paths of inte-
gration. The integrals along stationary phase paths A
and B have respective phases, 6y and 6,,:

™
along A: 6= E(yo—y)2+7ryoH/l;

®)

m™
along B: 6,,= —2-(?75p—y)2+7rH(7lsp—y)/l~

The saddle point is located on the real axis at w= 7y,
and is defined by the solution to the equation

—y="y0 exp[ —I(nsp—y0)/H]. (6)

The exact solution for the intensity requires numerical
integration along the lines of stationary phase. The
character of the resulting light curve depends upon the
specified values of /, H, and ¢,. The diffraction fringe
spacing is of order /, and the length scale of flux change
from differential refractive bending is of order H. Differ-
ential refractive bending is important when the parame-
ter b=¢l?/mH? is of order unity or greater.

We have obtained solutions for a suite of values of
I, H, and ¢,. Figure 3 presents two series of light curves
for the cases H=1! and H=10l. The parameter b is

¥>0. See text for explanation of symbols.

varied to show the transformation of the light curve
from a vacuum diffraction pattern to the geometric
optics limit.

We have found two approximations to the exact
solution which are valid under restricted circumstances.
The first approximation utilizes the fact that the inte-
gral K in Eq. (1) can be expressed as a function of the
usual Fresnel integrals as long as ®(w) can be accurately
represented by a second-order expansion in w over the
significant range of contribution to the integral. The
result is

=~ i {[C (&) —31+[SE)—31%, (M
where .
wy?

T 2040

C() 2 cos
- / ",
S() Jo sin 2

The condition for validity of the approximation is

¢o[l(w—y0)/H/bKm/2
or, equivalently, 8)
B[l (w—1y0) J3/3HKL1.

in the range of w for which there is significant contri-
bution to the integral K in Eq. (1). This range
cannot be defined precisely, but is certainly several
tens of Fresnel zones from y. In practice, this restricts
the application of Eq. (7) to instances where H/I>>1
and b<<1. The approximation is increasingly accurate
as the shadow boundary is approached (i.e., as y — 0).
These results are in agreement with those of Fjeldbo
and Eschleman (1965), but we emphasize that the
requirement of a low-density atmosphere is not- suffi-
cient ; in addition, the Fresnel zone scale must be much
less than the scale height. For a distant object such as
Pluto, this last condition may not be satisfied.

We have obtained another approximation which is
valid for an arbitrarily dense atmosphere and reproduces
the entire light curve away from the shadow boundary
as long as H>>1. In this case, we approximate the station-
ary phase paths A and B in Fig. 2 as straight lines over
the region of major contribution to the integral. The
complex integrations can then be performed analytic-
ally. The results follow.
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(equivalent toincreasing p
optics result of Baum and Code
axis.

As in the exact solution, 7= KK*/2. For the entire
bright region away from the shadow boundary (y>0),

Ky

2

2 K
1+
. K

2

+2

A

B

Ky

B

cos<eo—osp—3w/4)], ©)

where

F16. 3. Model light curves for occultations of a monochromatic point source. The effect of increasing the amount of atmosphere
arameter b) is shown from top to bottom as the transition from a vacuum diffraction pattern to the geometrical
(1953). Curves on the left have H/I=10; on the right, H/l=1. Note the changes in scale along the y

60— Oy ~my?{1—[b/ (14 D) T}/2,

|Ka|=1/my,

(10)

|Kg|={2/[14+1(np—y)/HI}
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F16. 4. Comparison of exact and approximate solutions. The
exact curve has parameters H/l=10, b=0.33. Notice that a small
segment of the true solution is not matched by either approxi-
mation. For larger H/l and smaller b this segment disappears,
while for smaller H/I and larger b the approximations are less and
less accurate.

Far from the shadow boundary, the transcendental
equation (6) must be solved for 5s,. For the first few
fringes, we may use the approximation

Nsp—Yo=y/ (140),

and Eq. (10) can be rewritten as

|KB|~{2/[1+”(1—§(1M:,5)]]%

for y—yo=0(1). (11)

It can be shown that this stationary phase expansion
is equivalent to the analogous geometric optics result
whenever |Ka/Kp|<«<1. In this case, I~ |Kp|?/2. From
Egs. (6) and (10), this can be recast in the form

(D)

y'=H[b+In(b)—1]/L

This is just the Baum and Code equation for an occulta-
tion light curve assuming geometric optics and constant
scale height (Baum and Code 1953).

(12)

where

FRENCH AND GIERASCH

For the dark region, y<0, away from the shadow
boundary,

KK*=~|Kx|*= (1/my). (13)

Because of the singularity of Ka at y=0, the approxi-
mation breaks down near the shadow boundary, for
|y| $2. Equation (7) provides a better approximation
to the light curve in this region.

By combining these two approximations, accurate
light curves can easily be generated when <1, H/I>>1.
Near the shadow boundary, the intensity is accurately
given by Eq. (7), and far from the shadow boundary, the
intensity is given by Eq. (9). As b is increased, Eq. (7)
is less and less accurate. Eventually, there will be a
segment of the light curve which is not accurately
reproduced by either approximation. Figure 4 shows a
comparison of exact and approximate solutions at a
value of b for which the expansion approximation is
beginning to break down. In this case, the second-order
expansion is accurate only for y less than about 2,
while the stationary phase approximation holds for y
greater than about 1.5. Notice that the approximate
stationary phase method is valid for arbitrary b; that
is, for an arbitrarily dense atmosphere. As b becomes of
order unity, the important length scale for the light
curve is H, and the uncertain region near the shadow
boundary becomes less significant since it corresponds
to only a few Fresnel zones. If required, the exact
solution for this segment can be obtained numerically
by integrating Eq. (1) along stationary phase paths
defined by Eq. (5).

II. DISCUSSION
A. Limitations of the Theory

In the preceding calculations, we have ignored
several complications which make occultation observa-
tions difficult to interpret. Our assumption that the
atmosphere is radially symmetric and of constant
scale height is simplistic, but is a reasonable starting
point and, as in the case of geometric optics, renders
the problem analytically tractable. Consideration of
diffraction effects of atmospheric inhomogeneities,
turbulence, scintillation, and other complexities will
ultimately be important but seems premature at this
stage. Andrianov (1969) shows that a perfectly conduct-
ing spherical surface can modify occultation light
curves, but at optical wavelengths perfect conductivity
is a poor approximation and we feel safe in ignoring
such effects. Calculations by Evans (1970) indicate
that planetary surface irregularities can cause distortion
of vacuum diffraction patterns when the irregularities
are of order / in size. This is significant for lunar occulta-
tions when ! is only a few meters, but for planetary
observations with / several hundred meters or more, the
problem is much less severe.

The combined tendency of finite optical bandpass
and finite star size to smooth out features in the light
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TaBLE 1. Surface atmospheric refractivity »o and number density 7, for b=1.
See text for discussion of choice of H and other details.

Occulting I(km)
object D(AU) (A=4400 A) H(km) H/l vo no(cm™3)
To 4.2 0.37 15 40.3 8.7X10710 7.8%X108
Ganymede 4.2 0.37 15 40.3 7.2X10710 6.5X10%
Rhea 8.5 0.53 15 28.3 ) 7.1X10710 6.4X10%
Titania 18.2 0.77 15 19.4 3.8X10"10 3.4X101
Triton 29.1 0.98 15 15.2 1.2X107% 1.1Xx10
Pluto 31.0 1.01 1 0.9 1.5X10712 1.4Xx101
5 4.4 1.7x10™1 1.5X10
15 13.3 8.8X107u 7.9%x102
25 22.2 1.9X107%0 1.7X101

curve is important and has been discussed extensively
in the literature (see, e.g., Nather and McCants 1970).
Elliot et al. (1975) consider in detail the problem of
convolving a stellar image with the light curve.

B. Application of the Theory

Under what circumstances must we account for limb
diffraction effects in the proper interpretation of occulta-
tion light curves? The atmosphere must be thin enough
for diffraction effects of the planetary limb to be im-
portant. In our parlance, “thin enough” means that the
parameter b must not greatly exceed unity, as can be
seen in Fig. 3. From the definition of b, this condition
can be stated as

b= (2rR/H)*wD/HS 1.

When 531, as in the case of most occultations by
planets, limb diffraction is unimportant. This is the
case, for example, in the 1976 occultation of ¢ Gemi-
norum by Mars and the 1977 occultation of SAO
158687 by Uranus. Table I lists the surface atmospheric
refractivity »o and number density 7, of several plane-
tary objects for the case b=1, when diffraction effects
and differential refractive bending are both important.
Number densities are calculated for an atmosphere whose
refractivity is 3XX 10~ at STP; this value is appropriate
for N, (Allen 1973). Also shown are the Fresnel zone
scale for A=4400 A and the scale height. The scale
height is difficult to estimate, and is in fact one of the
unknowns which occultation data could permit us to
determine. For Pluto, we know none of the parameters
which define the scale height of the putative atmosphere,
and a range of guesses for H is given. For the other
objects, we take H=15 km as reasonable for an atmo-
sphere of N, but we attach no deep significance to this
choice. The nature of the resultant occultation curves
can be seen in each case by comparison of Fig. 3 for the
appropriate values of b and H/I.

It is not enough to know when limb diffraction is
theoretically important. We must also determine the
observational conditions under which we could perceive
its effects in an occultation curve. Fringes, the charac-
teristic signature of limb diffraction, will be badly

(14)

smeared whenever the stellar image is much greater
than ! at the occulting object. Thus, a star with too
large an angular diameter will mask all fringes. Ad-
ditionally, there must be enough light from the star
to resolve fringes in the noise. We have attempted to
quantify the requirements for limb diffraction to be
visible in a light curve, assuming that the atmosphere
is thin in the sense defined above. We do not consider
the case of occultations using spacecraft, which re-
quires special consideration. For the size of the stellar
image at the occulting body to be less than %, the ap-
parent magnitude of the occulted star must be at least
as large as Mmin:

mmin=M—5+5 10g1o(2R OD/h)7 (15)

where M is the absolute stellar magnitude, R is the
stellar radius, and D is the distance to the occulting
body; the argument of the logarithm is in parsecs.
When 7% is of order I, only the first few fringes survive
the convolution process, as can be seen in Fig. 5.

A star must be far enough away to avoid washing
out the diffraction pattern, but if it is too far away, there

1.0——

Monochromatic, Point Source
+=-s+---Finite Bandwidth, Point Source
—~—— Monochromatic, Finite Source

—~.—. Finite Bandwidth, Finite Source
Size of Stellar
Image at lo

0.4

1 1 1 1 1 1 1 1 1

1 B 1 1 1 1 1

1
-02 o 02 04 06 08 10 12 14 1.6 1.8
' Y (km)

F16. 5. Effects of finite bandpass and stellar image on occulta-
tion light waves. Parameters used to generate these curves are
appropriate for the occultation of 8 Sco C by Io (Bartholdi and
Owen 1972). Central wavelength of filter 4400 A ; filter bandwidth
is 1000 & ; stellar image size at Io, given by /: in Eq. (15), is 1.341.
We assume b=0 and ignore stellar limb darkening.
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TasLE II. Range of acceptable apparent magnitudes of main-sequence stars occulted by a number of objects. #max, calculated for
telescope apertures of 44 and 88 in., represents a minimum brightness which will allow detection of diffraction fringes. #min represents
an upper limit on the size of the stellar image at the occulting object. When #min €xceeds #mmax, fringes cannot be detected. See text for
the criteria which define a detection, and for the assumptions involved in calculating #max and #min.

Occulting Mmin for given main sequence spectral class
object D(AU) Mmax (44 10.)  Mmax(88 in.) 05 BS A5 F5 G5
To, Ganymede 4.2 7.9 9.4 4.9 6.2 7.6 8.2 9.4
Rhea, Titan 8.5 8.0 9.5 5.6 7.0 8.4 9.0 10.1
Titania 18.2 8.3 9.8 6.4 7.8 9.2 9.8 10.9
Triton 29.1 8.5 10.0 7.0 8.3 9.7 10.3 11.5
Pluto 31.0 8.5 10.0 7.0 8.4 9.8 10.4 11.5

will not be enough light to resolve fringes in the noise.
We specify N min, the minimum photon counting rate
necessary to resolve fringes, by the following relation;

Nmin= an'l)/l (AI)Z. (16)

Here, n; is the number of points per Fresnel length !
that we want to observe with an accuracy of Al, a
given fraction of the unocculted intensity. The velocity
of the stellar image perpendicular to the limb of the
occulting body is given by ». The factor of 2 is present
because we demand that the fringes be resolvable when
the intensity is half its unocculted value. Equation
(17) relates Nomin to the maximum apparent magnitude
Mmax Of the occulted star which will still permit detec-
tion of fringes.

Mmax= Mret— 2.5 10€10(N min/ €4 AN res). 17)

Nt is the number of photons/cm? sec A reaching the
Earth from a star of apparent magnitude m,.s. 4 is the
collecting area of the telescope in (centimeters)?, AX is
the optical filter bandwidth in angstroms and, € is a
factor describing the efficiency of the filters, optics, and
photomultipliers used in the observation. Assuming
that the atmosphere is thin, the requirement for an
occultation to exhibit the effects of limb diffraction is

(18)

Here, m,p, is the apparent magnitude of the occulted
star.

We have calculated #max and #mmin for a range of
possible occultations. The results are given in Table
II. In calculating mmin, main-sequence stellar radii
and absolute magnitudes were taken from Allen (1973),
and we let #=1, for a central filter wavelength of 4400 A.
We determined m..x for telescope apertures of 44 and
88 in., and we used n;=>5, AI=0.02, AN=800 A, and
€=0.20. N.; was taken as 10° sec! cm™2 A~! for
mees=0.00. We used as a basis that the 5550 A mono-
chromatic flux reaching the Earth for V=0.0,B—V=0.0
is 3.58X 107 erg sec™! cm~2 A~ (Latham 1970).

Table II is intended to be suggestive, rather than
prescriptive. Its results were calculated on the basis of
primitive notions of what constitute acceptable data for
fringe detection. The use of least-squares fitting
techniques in analyzing the data would have the effect

mmins map ..<_ Mmax.

of raising #max. On the other hand, noise introduced by
light from the occulting body will tend to lower #max.
The problem of data analysis in the presence of noise
is complex and in the case of occultation light curves
remains to be addressed in detail. Occultation proba-
bilities have been studied by a number of authors (see,
e.g., O'Leary 1972) and we do not discuss them here.
It is clear, however, that occultations of stars with
magnitudes less than mm.x are rare. ‘

Of all past observations known to us (other than

Junar events) only Bartholdi and Owen (1972), in the

occultation of 8 Sco C by Io, present evidence for
diffraction fringes. Even here, the identification cannot
be regarded as certain. Figure 7 of their paper shows
that the length scale of the fringes in their best fit is
much shorter than the coherence interval of the noise
in their data. Additionally, the maximum predicted
fringe amplitude is 15%, of the unocculted flux, while
the data show intensity variations as large as 359,
just prior to the onset of the occultation. (Notice that
the abscissa in their Fig. 7 should be labeled in thou-
sands, not hundreds, of meters.) The lack of correlation
between ingress and egress curves is further cause for
concern. In spite of these problems, their observations
provide the best data that we have so far. However,
stellar occultations by asteroids occur relatively fre-
quently and careful observation may permit diffraction
fringes to be observed. While net providing atmospheric
information, analysis of fringe spacing could allow
determination of asteroid diameters from a single
observation (Elliot 1976). An excellent opportunity
for observers in western North America to apply this
technique will occur on 10 October 1976 (UT), when
Pallas occults SAO 153844 (Taylor 1976).

Even given a light curve with definite fringes, it is
not an easy task to deduce atmospheric characteristics.
There are seven unknowns to be determined :

(1) the I=1 flux level,

(2) The I=0 flux level,

Q) v,

(4) the y=0 point,

(5) the nature of the stellar image, both size and limb
darkening characteristics,

(6) atmospheric scale height H,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1976AJ.....81..445F

FI

FIO76AT.C 227817 445

OCCULTATION LIGHT CURVES

(7) b; or, equivalently, the atmospheric refractivity
at the planetary surface.

Additionally, the effects of finite bandwidth must be
accounted for, although as seen in Fig. 5, the influence
of finite star size is much more important for reasonable
filter bandwidths. Even for AN/ as large as 0.23, the
first two fringes differ only slightly from the mono-
chromatic results. Since signal-to-noise constraints and
finite star size limit attention to the first few fringes in
any case, there seems to be little advantage in using
narrow-bandwidth filters for this class of occultations.
Nather and McCants (1970) discuss a number of
model-fitting techniques which could be modified for
data analysis in this application.

Theoretically, the slope of the light curve at y=0
can be used to determine b, but in practice uncertainties
in v and convolution with the stellar image will make
this difficult. Simultaneous observations at several
locations would allow an accurate determination of v.
By observing at several different wavelengths, the
fringes can be checked, since fringe location is wave-
length dependent, while the geometric optics light
curve features, due to differential bending, depend only
on H and v.
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