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1 Purpose

We are �nishing the paper on the C313.2 observations, and want to strictly limit
the amount of atmosphere around Charon. The reason is twofold. First, there
is inherent interest in the presense or absense of an atmosphere around Charon.
Second, the presense of an atmosphere may a�ect the derived radius.

The solution appears to be contained in French and Gierasch 1976, �Di�rac-
tion calculation of occultation lightcurves in the presence of an isothermal at-
mosphere,� Astron. J. 81, 445-451, equation 7. However, this appears to have
typographical errors.

We are looking for a solution that (1) reproduces Fresnel di�raction in the
airless case, (2) reproduces Baum and Code refractive lightcurves in the case of
no edge.

2 Preliminaries

We summarize the relevant starting points.
First, the de�nitions in FG76

λ = wavelength of observation

D = distance to occulting body

l = (λD/2)1/2 Fresnel scale

H scale height

R radius of occulting body

φ0 phase excess of graxing ray in radians

ν0 refractivity of the atmosphere at the surface

b = φ0l
2/πH2 di�erential bending parameter
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y distance along lightcurve from shadow boundary in units of l

y0 location along light curve of line pasing through occulted object and
planetary limb.

We can relate b and y0 to more usual non-di�ractive occultation terminology by
noting that since φ0 = ν0(2π)3/2(RH)1/2/λ, and since the bending angle (let's
call it αsince RG76 use θ for the total exponent in the Fresnel convolution) is
related to ν0by

α(r) =
d

dr

∞∫
−∞

ν((r2 + x2)1/2)dx

Since νis exponential with scale height , α =
√

2πR/Hν. In particular, the

bending angle for the surface-grazing ray, α0, is α0 =
√

2πR/Hν0. We also
have y0 = (D/l)α0 = φ0l/πH.

We can simplify our lives by de�ning a few more variables:

h =H/l (scale height in units of l)

d =D/l (distance to occulting body in units of l)

r =R/l (radius of occulting body in units of l)

Also, I'll be using φsinstead of φ0for the surface phase excess, and ws instead
of y0 for the location of the surface in the plane of the phase screen.

3 Preliminaries

We start with the standard equations for Fresnel di�raction by a thin screen.
Since we're following FG76, we use their version (more or less).

I(y) = KK∗/2

K(y) =
∫

eiθ(w)dw

θ(w) =
π

2
(w − y)2 + Φ(w)

Φ(w) = (2π)3/2
(RH)1/2

λ
ν0

The basic trick, as with most Fresnel calculations, is to turn the exponent
into something quadratic in w. This can be then turned into expressions involv-
ing the Fresnel integrals
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C(z) =
∫ z

0

cos(πz2/2)dt

S(z) =
∫ z

0

sin(πz2/2)dt

Note than −C(−z) = C(z), −S(−z) = S(z), and C(∞) = S(∞) = 1/2.
This all means that∫ b

a

ei(π/2)z
2
dz = [C(b) + C(−a)] + i [S(b) + S(−a)]

and ∫ ∞

a

ei(π/2)z
2
dz =

[
1
2

+ C(−a)
]

+ i

[
1
2

+ S(−a)
]

It's useful to notice that constant terms (terms that don't depend on w) in
θ don't a�ect the intensity.

K(y) =
∫

eiθ(w)+ψ(y)dw = eiψ(y)

∫
eiθ(w)dw

I =
[
eiψ(y)

∫
eiθ(w)dw

] [
eiψ(y)

∫
eiθ(w)dw

]∗

I =
{[

eiψ(y)
] [

eiψ(y)
]∗}{[∫

eiθ(w)dw

] [∫
eiθ(w)dw

]∗}

I =
[∫

eiθ(w)dw

] [∫
eiθ(w)dw

]∗

4 Example 1: No atmosphere, no screen

This trivial example is to show the order in which we do things. First, we write
the exponent out, with Φ(w) = 0.

θ(w) =
π

2
(w − y)2

Then, we make the variable substitution to put things into a form for the
Fresnel integrals:

z = w − y

and make the substitutions into the integral
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dz = dw

Limits are w = −∞ to ∞, so z = −∞ − y to ∞− y, or −∞ to ∞. This
gives us

K(y) =
∫ ∞

−∞
ei(π/2)z

2
dz = [C(∞) + C(∞)] + i [S(∞) + S(∞)] = 1 + i =

√
i/2

The intensity is I = KK∗/2 = (1 + i)(1− i)/2 = 1, as it should.

5 Example 2: No atmosphere, half-screen

The seond example is almost as easy as the �rst, but reproduces the Fresnel
fringe from a half screen.

First, we write the exponent out (as before), with Φ(w) = 0

θ(w) =
π

2
(w − y)2

Then (as before), we make the variable substitution to put things into a form
for the Fresnel integrals:

z = w − y

and make the substitutions into the integral

dz = dw

Limits are w = ys to ∞, so z = ys − y to ∞. This gives us

K(y) =
∫ ∞

ys−y
ei(π/2)z

2
dz = [C(∞) + C(y − ys)]+i [S(∞) + S(y − ys)] =

[
1
2

+ C(y − ys)
]
+i

[
1
2

+ S(y − ys)
]

The intensity is I = KK∗/2is,

I =
1
2

{[
1
2

+ C(y − ys)
]2

+
[
1
2

+ S(y − ys)
]2

}

Since y− ys is the distance from the shadow edge, we see that at y = −∞, I=0,
and at y =∞, I=1. As it should.
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6 Example 3: Isothermal atmosphere, no screen

The next example shows what happens when we add an atmosphere, where the
phase delay through the atmosphere is treated as a thin screen.

First, we write the exponent out. We Taylor expand Φ around w1: Φ(w) =
φ1 − (φ1/h)(w − w1) + (φ1/2h2)(w − w1)2. What do we pick for w1? Since (in
geometric optics) the ray that passes through the phase screen at w1is bent into
the observer screen by −φ1/πh = −(φs/πh) exp(−(w1−ws)/h), the part of the
phase screen that contributes the most to the integral at y is that part near w1

, where w1is de�ned as the solution to y = w1 − φ1/πh (recalling that φis a
function of w). Or, if δw = w − w1, then w − y = δw + φ1/πh, and

θ(w) =
π

2
(δw + φ1/πh)2 + φ1 −

φ1

h
δw +

φ1

2h2
δw2

Then, we make the variable substitution to put things into a form for the
Fresnel integrals. We expand θ(w) and collect terms in δw

θ(w) =
π

2

[
δw2 +

2φ1

πh
δw +

[
φ1

πh

]2

+
φ1

πh2
δw2 − 2φ1

πh
δw +

2φ1

π

]

θ(w) =
π

2

[(
1 +

φ1

πh2

)
δw2 +

[
φ1

πh

]2

+
2φ1

π

]

De�ne b1 = φ1/πh2 (analogous to b, the bending parameter at the surface).
We can also drop the bits that don't vary with w. This simpli�es θ:

θ(w) =
π

2
(1 + b1)δw2

After this slog, we can now make our variable substitution.

z = (1 + b1)1/2[w − w1]

and make the substitutions into the integral

(1 + b1)−1/2dz = dw

Limits are w = −∞ to ∞, so z = −∞to ∞. This gives us

K(y) =

∫∞
−∞ ei(π/2)z

2
dz

√
1 + b1

=
[C(∞) + C(∞)] + i [S(∞) + S(∞)]√

1 + b1

=
1 + i√
1 + b1

=

√
i/2√

1 + b1

The intensity is I = KK∗/2 = 1/(1 + b1), as it should.
Why �as it should�? It's easier to think of this from the wplane (the plane

of the thin screen, not the plane of the observer). y1 = w1 − φ1/πh, and we've
already related −φ1/πh to dα = Dα/l, the distance time the bending angle in
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units of l. This means that the ray passing though w1in the screen also passes
through y1. Given a y1, we're stuck with our standard Baum and Code problem
of �nding w1iteratively, since we want to solve the following non-linear equation
for w1

y = w1 −
φse

−(w−ws)/h

πh

where φsis the phase delay at the surface, at screen position ws.
But, given w1, it's now easy to calculate b1 = φ1/πh2. Again, this is relatable

to geometric optics, since b1 = −dα/h = Ddα/dr, where r = lw is the distance
at the screen in �real� units (km etc).

7 Example 4: Isothermal atmosphere, half screen,
above the surface

The next example is a trivial extension of the previous example. Again, we
Taylor expand Φ around w1, de�ning w1 as the solution to y = w1 − φ1/πh,
δw = w − w1, b1 = φ1/πh2 and drop the constant term in Φ.

θ(w) =
π

2
(1 + b1)δw2

Make our variable substitution.

z = (1 + b1)1/2[w − w1]

and make the substitutions into the integral

(1 + b1)−1/2dz = dw

Limits are w = ws to ∞, so z = zs to ∞, where

zs = (ws − w1)
√

1 + b1

This gives us

K(y) =

∫∞
zs

ei(π/2)z
2
dz

√
1 + b1

=
[C(∞) + C(−zs)] + i [S(∞) + S(−zs)]√

1 + b1

The intensity is

I(y) =
1

2(1 + b1)

{[
1
2

+ C(−zs)
]2

+
[
1
2

+ S(−zs)
]2

}
For the airless case, this reduces to the usual equation for Fresnel di�raction

by a half-screen.
For the case where the part of the atmosphere probed is far above the surface,

C(−zs) = S(−zs) = 1/2, and this reduces to the geometric optics solution.
For the intermediate case, the airless fringe pattern is both fainter and spread

out. It is fainter by the factor 1 + b1. It is spread out because a change of dy at
the observer plane is a change of (1 + b1)dy in w1.
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8 Example 5: Isothermal atmosphere, half screen,
below the surface

If y < ysthen we can't solve y = w1 − φ1/πh for w1above the surface. The part
of the atmosphere that most a�ects the Fresnel integral is the part just above
the atmosphere. So, Taylor expand Φ around ws, the location of the surface
in the screen plane. The (geometric-optics) surface in the observer plane is
ys = ws − φs/πh. In FG76, their φ0 is the same as this φs, their y = 0 is our
y = ys, and their w = y0 is our w = ws. De�ning δw = w − ws, we get

w − y = δw − (y − ws)

φ(w) ≈ φs −
φs
h

δw +
φs
2h2

δw2

θ(w) =
π

2
(δw − (y − ws))2 + φs −

φs
h

δw +
φs
2h2

δw2

Expand in δw:

θ(w) =
π

2

[
δw2 − 2(y − ws)δw + (y − ws)2 +

φs
πh2

δw2 − 2φs
πh

δw +
2φs
π

]
Collect terms and substitute ysfor ws − φs/πh in the linear term.

θ(w) =
π

2

[
(1 + bs)δw2 − 2(y − ys)δw + (y − ws)2 +

2φs
π

]
�Complete the square� and drop the constant term.

θ(w) =
π

2
(1 + bs)

[
δw − y − ys

1 + bs

]2

Make our variable substitution.

z = (1 + bs)1/2
[
w − ws −

y − ys
1 + bs

]
and make the substitutions into the integral

(1 + b1)−1/2dz = dw

Limits are w = wsto ∞, so z = zsto ∞, where

zs = (ys − y)/
√

1 + bs

This gives us

7



K(y) =

∫∞
zs

ei(π/2)z
2
dz

√
1 + bs

=
[C(∞) + C(−zs)] + i [S(∞) + S(−zs)]√

1 + bs

The intensity is

I(y) =
1

2(1 + bs)

{[
1
2

+ C(−zs)
]2

+
[
1
2

+ S(−zs)
]2

}
For the airless case, this reduces to the usual equation for Fresnel di�raction

by a hald-screen.
For the case where the observer is below the geometric surface, C(−zs) =

S(−zs) = −1/2, and this reduces to zero �ux.

9 Example 6: Isothermal atmosphere, half screen,
above the surface (again)

In example 4, we expanded the phase delay around w1. But, the di�raction
arises because of the blockage of the �eld for w < ws. So, maybe we should be
doing the following:

K(y) = Kgeom(y) + Kdiff (y)

Kgeom(y) =
∫ ∞

−∞
eiθ(w)dw

Kdiff (y) = −
∫ ws

−∞
eiθ(w)dw =

∫ −∞

ws

eiθ(w)dw

To �nd Kgeom, follow example 3 (expanding around w1) to get

Kgeom(y) =
1 + i√
1 + b1

To �nd Kdiff , follow example 5 to get

Kdiff (y) =

∫ −∞
zs

ei(π/2)z
2
dz

√
1 + bs

=

[
C(−zs)− 1

2

]
+ i

[
S(−zs)− 1

2

]
√

1 + bs

Putting it all together, we get

I(y) =
1

2(1 + bs)


[√

1 + bs
1 + b1

− 1
2

+ C(−zs)

]2

+

[√
1 + bs
1 + b1

− 1
2

+ S(−zs)

]2


Again, for no atmosphere (bs = 0, b1 = 0, −zs = y− ys), this reduces to the
airless case. For a deep atmosphere (−zs large), this reduces to the geometric
solution,
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10 Comparison with French and Gierasch 1976

This is close to, but not quite, FG76, who have

I ≈ 1
2(1 + b)

{[
C(z)− 1

2

]2

+
[
S(z)− 1

2

]2
}

z =
πy2

2(1 + b)

First, the intensity should be addint 1/2, not subtracting. Second, the equa-
tion for z = . . . was probably meant to be z2 = . . .. Finally, the factor of π/2 is
super�uous.

11 Actually using the isothermal atmosphere, half-
screen

Taking this back into the realm of real units:
We could work straight in distances, not times. We have a lightcurve with

shadow-plane radii ρi(km). We know the distance, D (km) and the wavelength
λ(oddly, in km), giving us the Fresnel scale l (km). Our model takes the scale
height H (km), the surface radius

We have a lightcurve with times ti. We think we know the wavelength and
the perpendicular sky velocity, giving us tF =

√
λD/2/v⊥, the Fresnel time

scale. The

9


