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1. Introduction

Breaking gravity waves are important to the momentum budget or energy budgets of most of the upper atmospheres in our solar system. For example, the momentum carried by gravity waves are a major contributor to the anomalously high temperatures in Earth’s winter mesopause (e. g. Fritts 1989, Holton 1982), and to the quasi-biennial oscillation (QBO) in Earth’s stratosphere. Gravity waves are important carriers of momentum on Venus as well, where they are responsible for the superrotation of the upper atmosphere (Alexander 1992). Analogous effects have been suggested in the outer planets. Fraser (xx) and xx (xx) suggest that the roughly 4-year variation in Jupiter’s low-latitude stratosphere is analogous the Earth’s QBO, and recent scaling arguments suggest that the secular heating and cooling seen in the mid-latitude Uranian mesopause (Young et al. 2001) is analogous to the temperature reversals in Earth’s mesopause. Furthermore, we expect energy deposited by gravity waves to be more important on the outer planets than it is on the Earth, because of the smaller incident solar energy (Roques et al. 1994; French et al. 19xx).

High vertical spatial resolution is needed to detect and characterize gravity waves. For this reason, occultations are one of the few successful ways for measuring gravity waves (e.g., French and Gierasch 19xx, Hubbard 1979, Roques et al. 1994, Sicardy et al. 19xx, Cooray et al. 19xx). A planetary atmosphere, acting as a phase screen, alters both the phase and amplitude of an incident wave. Ground-based stellar occultations essentially measure a light curve, the change in flux vs. time as a star sets behind a planetary atmosphere. Because the phase screen is a function of the integral of refractivity through the atmosphere, the reduction of occultations have generally followed one of two methods: either forward modeling, or inversion of the data. We briefly discuss these below. Wasserman and Veverka (1973) discuss these two techniques in more detail.

In forward modeling, the atmosphere is described as a model with some small number of parameters. The most common of these is an isothermal atmosphere, which depends on only two parameters, such as the temperature and the number density at a specified height. More complex functions can include thermal gradients or more elaborate ad hoc functions, or even models based on sophisticated atmospheric models. With thermal modeling, the integrals of number density are be calculated, including (if desired) effects such as ray crossing, wave optics, and, in the case of stellar occultations, the finite angular size of the occulted star. Furthermore, the model lightcurves or phase delays can be compared directly to observations; this greatly simplifies the error analysis, allowing the calculation of formal errors for the parameters of the model atmospheres. However, the line-of-sight integrals can be slow. More severe, the models are rarely flexible enough to account for the small-scale structure indicative of gravity waves.

In stark contrast, the inversion method uses an Abel transform to formally calculate a refractivity from an observed lightcurve or phase delay profile. At its best, this method achieves the highest possible spatial resolution, since each observed flux or phase delay translates into a derived refractivity in the atmosphere. However, this process requires very high signal-to-noise on the raw data (and can’t handle, for example, negative fluxes for stellar occultation), so data is often pre-averaged or smoothed. This method has to assume geometric optics, no wave crossing, and a point-source. Furthermore, since the derived refractivity profile reproduces the lightcurve or phase delay exactly (under the aforementioned assumptions) the statistics of the derived temperatures are difficult to characterize.

A third method concentrates on characterizing the statistical properties of the fluctuations in the refractivity (and therefore the phase screen) from the statistical deviations of the observed lightcurve from one expected for an isothermal atmosphere. While this directly addresses the issue of describing the putative gravity waves, it does not attempt to derive profiles of refractivity or temperature.

In this paper, we present a variation of the forward modeling method of occultation analysis based on wavelet decomposition of the refractivity. In this method, the refractivity is assumed to mainly follow an exponential, as for an isothermal atmosphere: 
[image: image1.wmf], with a perturbation term that is a sum of wavelets 
[image: image2.wmf]. Because any refractivity profile can be decomposed into a sum of wavelets, this method maintains the flexibility of the inversion method. Additionally, it maintains the advantages of other forward-modeling methods, including the ability to handle ray crossing, diffraction, and finite source sizes, and the ability to calculate analytic thermal gradients. Finally, the derived coefficients of the wavelets can be directly related to items of physical interest, such as the power spectra of the fluctuations.

The use of wavelets to describe the refractivity profile has benefits far beyond that of improving data reduction. In recent terrestrial research, wavelets are challenging Fourier analysis as the tool of choice for describing gravity waves, especially breaking gravity waves. The prime reason for this is that Fourier analysis is best suited to stationary signals, while wavelets, being compact in both altitude and wavenumber, are well suited to localized, quasi-monochromatic fluctuations. Because of this, wavelet analysis has distinguished turbulent and coherent motion, analogous to distinguishing those wave that are breaking from those that are not (). It has also identified isolated dominant gravity wave modes, and to followed the altitude dependence of those waves’ amplitude and wavelength. Taking the power spectrum as a whole, wavelet analysis has measured how the transition wavelength between breaking and unbreaking waves gets shorter with altitude (Sato and xx). Wavelet analysis may be better than Fourier analysis for measuring the exponent of power spectra that have a – dependence (Arby et al 19xx). Finally, wavelet analysis has shown that the PDF of some observations are consistent with gravity waves. Wavelet decomposition is not the final solution to all problems in occultation analysis. They do not eliminate the infamous upper boundary problem, and large temperature gradients might be better modeled as a sum of polynomials.

We present the following prescription in the hope that it will find broad utility in the reduction of stellar occultations. We note that the formulations presented below can be easily adopted to radio or ultraviolet occultations as well.

2. Wavelet decomposition

We begin this section with a brief introduction to wavelets. As stated above, wavelets are compact in both time and frequency, or, as we will use them below, in both altitude (r) and vertical wavenumber (m). We refer the reader to Farge (1992) for a concise review of wavelets and a discussion of their applicability to non-linear fluid dynamics.

Wavelets are described in terms of a mother wavelet, and all other wavelets are a dilation and translation of this original wavelet. In general, the translations are described by a binary dilation index, j, and a binary translation index, k, 0 ≤ k < 2j. Wavelet jk is compressed relative to the mother wavelet by a factor of 2j and translated by 2-j k. An example of a mother wavelet and two derived wavelets are shown in Figure 1. The relationship between the mother wavelet and a wavelet with dilation l and position x0 can be written:



[image: image3.wmf]
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The Fourier transform (written in terms of wavenumber = 2/wavelength) of the wavelet is defined by
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and we can deduce that the Fourier transform of a wavelet in terms of the mother wavelet:
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If the wavelets are orthonormal, than a collection of binary dilations and discrete shifts make up a complete basis set for decomposing any function. In this decomposition, the dilations occur in octaves, so 
[image: image6.wmf] and  
[image: image7.wmf]. With such an orthonormal wavelet, a function f can be written in terms of the wavelets:
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where the wavelet coefficients, cj.k, can be derived by a multiplication in either the spatial or spectral domain (where * indicated complex conjugation):
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For definiteness, this paper assumes the Meyer wavelets used by Sato and Yamada (1994) and Yamada and Ohkitani (1990, 1991) to study turbulence and waves, although the derivations apply to any wavelet. We have several reasons to select this particular wavelet. First, it is extremely smooth, being continuously differentiable. Second, it has been used by other authors to investigate gravity wave activity in the terrestrial atmosphere, Finally, it is extremely compact spectrally, with 
[image: image10.wmf]=0 for || < 2/3 or ||>8/3. The mother wavelet of Sato and Yamada is a function of a unitless x, with the cone of influence (Farge 1992) extending spatially from 0 to 1 and spectrally from 2/3 to 8/3, although the wavelet itself falls off slowly outside this range—a consequence of it’s desirable smoothness. To apply this wavelet (a function of unitless x coordinate) to the study of a planetary atmosphere, we define our mother wavelet (j = 0, k = 0) as one whose cone of influence extends spatially from one scale height above to 3 scale heights below the radius of half light, and spectrally 2/12H to 2/3H, or wavelengths of three to twelve scale heights. The choice of the spatial range approximately matches the region to which occultations are most sensitive.
Since the occultation lightcurve is a function only of the refractivity in the atmosphere, we focus on refractivity as our fundamental quantity. In particular, we write the refractivity, , as the product of its “background” state, 
[image: image11.wmf], and a perturbation term, :
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The background refractivity is assumed to decrease exponentially with a scale height H, and to have a value of h, at some radius, rh:
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We use the subscript h to indicate that rh is the half-light radius for  = 0.

In this paper, we decompose the refractivity perturbation into a sum of wavelet coefficients, 
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We will use similar notation for the background and perturbation terms for pressure (p), phase delay (), bending angle (), and the derivative of the bending angle (’). 

The phase delay is proportional to the integral of the refractivity along the line of sight. As usual, we ignore the bending of the ray through the atmosphere (Wasserman and Veverka 1993), so the radius r’ at a distance x along a path with closest approach radius r is simply  
[image: image15.wmf]. Thus, the integral of refractivity can be written:
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The power in expressing the refractivity in such a fashion is that the phase delay, being an integral of refractivity over the line-of-sight through the atmosphere, is a linear function of the refractivity. In other words, if we write the phase delay analogously to the refractivity, 
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we can immediately insert Eq. (4), (5), and (6) into Eq, (7) to show that
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and
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Eqn. (10) is standard in occultation studies, The usual method for solving this is to make the approximation 
[image: image21.wmf]. Equation (10) can then be analytically integrated to yield
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To integrate Eqn (11), we first write 
[image: image23.wmf] as the integral over its Fourier transform, and then exchange the order of integration over dx and dm:
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Comparing Eq. (13) to Eq (2), we can make the identification that
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Once again we make the approximation 
[image: image26.wmf], to make the integral in (14) analytic, resulting in:
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For the full wave optical solution, including diffraction from refractivity changes at scales smaller than the Fresnel zone, the occultation lightcurve is calculated directly from the phase delay. The diffraction calculation in combination with an exponential atmosphere is discussed in French and Lovelace (19xx), following the rescaling of Combes et al. (19xx). This will be treated in a future paper.

For calculation of lightcurves using geometric optics, we need the bending angle of the light ray through the atmosphere, and its derivative:
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Since the operation of taking a derivative is linear, steps analogous to those taken in Eq (11)-(15) can be taken to calculate the background and perturbation angle and its derivative,
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From (r) and ’(r), the lightcurve F() can be calculated using
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Finally, we consider the calculation of the pressure and temperature profiles from the refractivity profile. If the composition of the gas changes significantly with height, then the density has to be calculated from the refractivity explicitly. Similarly, variation of the effective gravitational acceleration complicates the integral of density to derive pressures. The integral to get pressure from refractivity is much simpler than the integrals in Eq (7), and it is not a great hardship to numerically find pressures from refractivities with realistic assumptions. However, under the usual large-planet occultation assumptions of relatively constant gravity and composition, the pressure is found by assuming hydrostatic equilibrium:
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where g is the gravitational acceleration (including terms arising from the planet’s rotation),  is the mean weight of a molecule of the atmosphere, nL is Loschmidt’s number, STP is the refractivity of the atmosphere at standard temperature and pressure.

Once more, taking into account the linearity of integration, we can derive an expression for the pressure:
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The term dp in Eq (22) is a constant offset to account for the “upper boundary problem,” namely, the constant of integration in Eq (21) and the fact that the integral for pressure extends to infinity, while the occultation is only sensitive to a few scale heights (at most) above half light. 

The temperature is derived in the usual way, using the ideal gas law,  
[image: image37.wmf], where k is Boltzman’s constant. In the special case where dp = 0 and both p and  are much less than one (e.g., the fractional perturbations are small), and defining 
[image: image38.wmf], T(r) can be approximated using:
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with the implication that 
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As we show in the next section, the relationships between the wavelets explain some relationships between features observed in lightcurves and their underlying fluctuations in the planetary atmosphere.

The effect of non-isothermal atmospheres (or non-exponential refractivities) has different behavior at large and small wavenumbers. The relationships can be summarized as follows:
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From this we see why stellar occultations are such sensitive measures of temperature fluctuations in planetary atmospheres. Notice that for Hm<<1, 
[image: image44.wmf], while for Hm>>1, 
[image: image45.wmf]. Therefore, for both large and small vertical wavelengths, a small perturbation in temperature leads to a large perturbation in the derivative of the bending angle. 
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Captions

Figure 1. Example of a mother wavelet (j = 0, k = 0) and two child wavelets (j=2, k = 2 (solid), and j=2, k=3 (dashed)). The wavelets with j=2 are offset by 2 for clarity.
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