Notes on Wavelets and Occultations: The 

Leslie A. Young, Southwest Research Institute, November 3, 2001

These notes are a contunuation of the notes begun in wavelets1.doc and wavelets2.doc.  The primary purpose of this document is to write the occultation diffraction equations used by French and Lovelace (19xx) and Cordes, Pidwerbetsy, and Lovelace (1986).
The goal

We want to be able to calculate the light curves using wave optics, which is especially important for the smaller scale atmospheric features. “Small scale” means less than the Fresnel scale. As we’ll see, this changes throughout the event.

At first glance, this looks like a problem that’s been solved since the time of Fresnel. Start with the equation for the wave amplitude at the observer. This time, instead of using the form from FR83, use the form from Goodman 1968 (G68). Note that the amplitude of the definitions are identical.
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This can be written as a convolution.
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So, what’s the problem?  The problem is that one main effect of an exponential refractivity is to bend the light rays (to use geometric optics terminology), so that a small range of r gets mapped to a large range of . This means, if we want to do this by brute force, we have to have a range of  that ranges all the way to  = 0. But, ugh, this means running r all the way down to r=0, way past anything physical. 

The solution is twofold. First, follow Cordes et al. to write Eqn. (1) in a form that has the main effect of the drop taken care of. The second step is to rework that into a form that looks rather like Eqn (1), so we can use convolutions.  
Deriving Cordes’s Eqn.

The set-up

In this derivation, we follow the notation of Elliot and Young (1992), in which roman variables are used for the planet plane (aka the screen) and greek variables are used for the shadow plane (aka the observer plane).
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Some definitions


radius in the observer’s plane (x in Cordes)

r
radius in the planet plane (aka the screen plane) (x' in Cordes)

(r)
phase delay

r0
midpoint of the expansion in the planet plane (x0 in Cordes)

e
offset distance in the planet plane. e = r – r0

r
“refractive” phase delay. r = 0 + r1 e + r2 e2
D
Earth-planet distance (z in Cordes)

G
“refractive” flux. G = (1 + Dr2/2)–1 = (1 + rf02r2/2)–1
rf0
Fresnel scale at start of occultation. rf02 = D
rf
Fresnel scale at r0. rf2 = G rf02

0
location in the observer plane where a ray passing through r0 ends up, assuming just the refractive phase delay, and midpoint of the expansion in the observer plane.  = r0 + Dr1/2.


offset in observer plane.  = -0 =  –r0 – Dr1/2

rr()
location in the planet plane such that a ray passing through rr() ends up at , assuming just the refractive phase delay. rr() = r0 + G = r0 + G(-0). (xr in Cordes)

r(e)
offset in observer plane for a given offset in planet plane for the refractive phase delay. r=e/G
f
Fresnel scale in the observer plane at 0. f = rf /G, or f2 =  rf02 / G

Some algebra

Start with the Fresnel integral. Define p to take up most of the slack in the exponent. Most of our effort will be rewriting p.
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Expand p, and then collect terms in powers of r.
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Work on these one term at a time. First, term A. From the definitions of G and rf, we have 
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Term B is harder. The first step is to substitute r1 and r2 from the definitions of 0 and G, respectively
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With this, we can now rewrite p by "completing the square," adding and subtracting a constant term.
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Plugging p into the original Fresnel equation (2) reproduces Cordes's Eqn 8.
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The integral now is normalized so that, if d = 0, the integral = 1.
We now also have an expression for the "unimportant phase," . It would be nice to be able to relate this something like the phase delay at rr(), but I haven't worked this out yet. Figuring out the significance of  may be useful if we apply wavelets to radio occultations.
Reworking Cordes’s Eqn. into a Convolution Eqn

We now rewrite in a way that can be treated as a convolution. Remember that we had two problems with the original convolution equation. The first is that the ranges of r and  are not coincident. This is treated by writing (7) in terms of e and , the distances of r and  from their respective midpoints. The second problem is that for a constant spacing in  (as is typical), the spacing in r gets finer as the occultation probes deeper in the atmosphere. This is accomplished by evaluating the wave amplitude even spaced in , but evaluating the phase delay evenly spaced in the finer increments of G. 
We work the difference in the propagation kernel
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With which Eq (7) becomes
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Just as we defined rr () to be the planet plane radius for  for the refractive portion, we can define a new variable, r = r(e) = e / G. With this, we
This can be written as a convolution in either of two ways.
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