; Given a number of points and a spacing, return an ; array of the wavelet fourier series and the ; array of frequencies (2 pi/wavelength) for the ; j, k wavelet as defined by Sato. function refr_jk_wL, H, d, xh, j, k, wL jk2x0x1, H, xh, j, k, x0, x1 psihatL = refr_wL(H, d, xh, x0, x1, wL) return, psihatL end pro refr_jk_wL_test H = 32. d = 1. j=1 k=1 psihatL = refr_jk_wL(H, d, 0., 0, 0, wL) psijkhatL = refr_jk_wL(H, d, 0., j, k, wL) window, 0, xs=1000,ys=500 !p.multi=[0,2,0] plot, wL, abs(psihatL), xr=[-20,20]/(4.*H) oplot, wL, abs(psijkhatL), /li, ps=-4 end pro refr_jk_wL_test2 xh = 0. H = 32. d = 1. j=1 psij0hatL = refr_jk_wL(H, d, 0., j, 0, wL) psij1hatL = refr_jk_wL(H, d, 0., j, 1, wL) window, 0, xs=1000,ys=500 !p.multi=[0,2,0] jk2x0x1, H, xh, j, 0, x0, x1 posn = 0.5*(x0+x1) - (xh-H) ; shift plot, wL, arg(psij0hatL), xr=[-20,20]/(4.*H), ps=1 oplot, wL, -wL/2. - wL * posn jk2x0x1, H, xh, j, 1, x0, x1 posn = 0.5*(x0+x1) - (xh-H) ; shift oplot, wL, arg(psij1hatL), ps=4 oplot, wL, -wL/2. - wL * posn end pro refr_jk_wL_test3 xh = 0. H = 32. d = 1. j=1 psij0hatL = refr_jk_wL(H, d, 0., j, 0, wL) psij1hatL = refr_jk_wL(H, d, 0., j, 1, wL) k=1 ishift = 2.^(-j) * (4.*H)*complex(0,1)*k psijkhatL = psij0hatL * exp(-ishift*wL) window, 0, xs=1000,ys=500 !p.multi=[0,2,0] plot, wL, arg(psij0hatL), xr=[-20,20]/(4.*H), ps=1 oplot, wL, arg(psij1hatL), ps=4 oplot, wL, arg(psijkhatL), /li oplot, wL, abs(psij0hatL) end