; Given a number of points and a spacing, return an ; array of the wavelet fourier series and the ; array of frequencies (2 pi/wavelength) for the ; j, k=0 wavelet as defined by Sato. function sato_j0_wL, n, d, j,wL dn = d * n wL=[findgen(n/2)-n/2,findgen(n/2)] * 2. * !pi/dn wabsL = 2.^(-j) * abs(wL) wtimesL = wabsL * 3./!pi ; initialize the return array with zeros. psihatL = complexarr(n) ; fill in case # 1 gd = where (wtimesL gt 2. and wtimesL lt 4., ngd) if ngd gt 0 then begin psihatL[gd] = 1.-sato_mother_wL_g(wabsL[gd]) end ; fill in case # 2 gd = where (wtimesL eq 4., ngd) if ngd gt 0 then begin psihatL[gd] = 1. end ; fill in case # 3 gd = where (wtimesL gt 4. and wtimesL lt 8., ngd) if ngd gt 0 then begin psihatL[gd] = sato_mother_wL_g(wabsL[gd]/2.) end ; multiply by exp(-iw/2) gd = where (wtimesL gt 2. and wtimesL lt 8., ngd) if ngd gt 0 then begin psihatL[gd] = 2.^(-j/2.) * sqrt(psihatL[gd]) * exp(-complex(0,1)*wL[gd]/2.) end return, psihatL end